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GENERAL INTRODUCTION 

For several years, workers in the Trahanovsky research group 

have been studying various reactive molecules such as carbenes and 

o-quinodimethanes (o-QDM's) derived from benzene, furan, and thio-

phene. o-QDM's have been shown to be reactive intermediates in a 

number of reactions, and have been used in organic synthesis. We de­

sired to attempt generation of a reactive organometallic o-QDM based 

on ferrocene, a well-known aromatic organometallic system. 

In addition, studies have been directed toward the understand­

ing of the gas-phase thermal reactions of simple organic molecules 

such as tetralin and benzocyclobutene. During FVP of o-allyltoluene, 

we observed a rearrangement that appears to involve intramolecular 

hydrogen-atom transfer, followed by intramolecular coupling or dis-

proportionation of the resulting diradical intermediates. Papers 2 

through 4 describe our studies concerning the pyrolytic rearrange­

ments of a number of alkylaryl olefins and allylphenols. 

The first section of this dissertation (Paper 1) concerns the 

preparation of ferrocenocyclobutene as well as the generation and 

trapping of the parent ferrocene-based o-quinodimethane. 

The second section of this dissertation consists of three separate 

papers, each addressing a different aspect of research concerning the 

hydrogen-atom transfer/diradical coupling reactions and rearrange­

ments of aryl olefins under FVP conditions. In paper 2, the FVP reac­

tions of o-allyltoluene and several derivatives are discussed. A mech­
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anism consisting of intramolecular hydrogen-atom transfers to gen­

erate diradicals is proposed. Three of the seven systems studied in 

paper 2 are part of the Ph.D dissertation of James L. Malandra (Iowa 

State University, 1993). In paper 3, the FVP reactions of two aryl-sub-

stituted styrene deriviatives are examined in terms of the mechanism 

proposed in paper 2. Additional mechanisms for formation of the prod­

ucts observed are suggested. Paper 4 presents the extension of this 

mechanism to the rearrangement of o-allylphenols under FVP condi­

tions. 

Explanation of Dissertation Format 

This dissertation consists of four complete papers in the style 

suitable for publication in journals published by the American Chem­

ical Society. As such, each section has its own numbering system and 

reference section following the text. The research described in the 

results and experimental sections was done by the author unless oth­

erwise indicated. Detailed analytical data and/or spectra are con­

tained in appendices following each section. Paper 1 has been previ­

ously published as a communication in Organometallics (Vol. 11. pp. 

2006-7). Paper 2 is the result of a collaborative project as described 

above. The material in paper 2 that is part of the Ph.D. dissertation of 

James L. Malandra (Iowa State University. 1993) is indicated with a 

footnote. A general summary follows the final paper. 
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PAPER 1. GENERATION AND TRAPPING OF 

ti3-(4,5-DIMETHYLENECYCLOPENTENYL)-TI5-CYCLOPENTADIENYL-

IRON, THE PARENT FERROCENE-BASED o-QUINODIMETHANE 
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INTRODUCTION 

The reactive molecule o-xylylene (1) is the parent benzene-based 

-CHa 

CHz 

1 

member of the large and important class of reactive molecules called 

o-quinodimethanes (o-QDM's). o-QDM's have been shown to be tran­

sient intermediates in many reactions^-2 and have been used exten­

sively as dienes in several organic syntheses.v.x.z Many 

o-QDM's based on aromatic systems other than benzene are known. 

Examples of these are the o-QDM's which are derivatives of naphtha­

lene (2)3 and furan (3).2b,4 general,o-QDM's readily undergo reac-

CHg 

CH, 

-o-

tions such as dimerizations and Diels-Alder reactions which generate 

the aromatic system on which they are based. ̂  "4 

Although many o-QDM's have been prepared and studied, only a 

few organometallic o-QDM's are known. A number of o-xylylene 

derivatives with a metal coordinated to the exocyclic diene moiety 

have been synthesized,5 but these compounds lack the high reactivity 
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characteristic of free o-xylylenes. Kundig® and Butenschon^ have re­

cently reported the syntheses of substituted tricarbonylchromi-

um-benzocyclobutene complexes which, when heated in the presence 

of a dienophile, exhibited chemical behavior similar to that of the un-

complexed analogs. Apparently the chromium-complexed substituted 

benzocyclobutenes undergo ring opening to give the corresponding 

complexed substituted o-xylylenes which react with the dienophile at 

a slightly slower rate than the uncomplexed species.G.7 Also, Buten-

schon has recently reported generation of a Ti3-(4,5-dimethylenecy-

clopentenyl)cobalt complex that appears to exhibit o-QDM-like reac­

tivity.® In this study, we present evidence for the generation and trap­

ping of the parent ferrocene-based o-QDM (4) by the electrocyclic ring 

opening of ferrocenocyclobutene (5). 

FeCp 

4 

FeCp 

5 

cp = C5H5 
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RESULTS 

FVP of 2-methylferrocenecarboxaldehyde N-amino-2-pheny-

laziridine hydrazone (6) at ca. 6 x 10"5 torr (380 °C) gave ferrocenocy-

clobutene (5) in 30-35% yield. Thermolysis of 5 in phenyl ether in the 

presence of N-phenyl maleimide (7) gave a pair of 1 : 1 adducts in a 

11:1 ratio. The major product was purified by recrystallization and 

identified as adduct 8, which was obtained in 13% isolated yield. The 

minor product was not isolated, but analysis of NMR provided sub­

stantial evidence that the minor component was compound 9, a 

stereoisomer of 8. 

O O H P 

NPh 

FeCp O FeCp H o 

8 

FeCp H o 

6 7 9 
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DISCUSSION 

It has been shown that carbenes can be conveniently and effi­

ciently generated by the decomposition of N-amino-2-phenylaziridine 

hydrazones.9 We predicted that 2-methylferrocenylcarbene (10). if it 

could be generated, would likely undergo C-H insertion to give 5. Hy-

drazone 6 was judged to be a suitable precursor to 5. Compound 6 was 

prepared as shown in Scheme 1. 

Scheme I 

O 

FeCp 

NNH. 

O 
1) n-BuLi 
2) Mel 
3) OH' (94%) 

Pb(OAc)4. styrene 
T (26%) 

O 

FeCp O 
HgNNHg. HgO (85%) 

MnOo, PhH 
(46%) 

O 
II 

(70%) 
CHa 

FeCp FeCp 

6 
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FVP of 6 presumably gives molecular nitrogen, styrene, and 

2-methylferrocenyl carbene (10) which rearranges to 5 by C-H inser-

- 5 

tion. 

H ^—Ph • • 

FeCp™" - PhCH=CH2 

6 10 

Compound 5 was obtained in relatively high purity (>95%: the 

rest of the material was ferrocene, methylferrocene, 1,2-dimethylfer-

rocene, and an unidentified ferrocene derivative, probably 2-methyl-

ferrocenylcarbonitrile) but in only fair yields (30-35%). 

We had speculated that 10 could undergo rearrangement to give 

vinylferrocene (11) in analogous fashion to that of o-tolylcarbene (12) 

to give styrene (13).10 No vinylferrocene was detected, which indicates 

that carbene 10 does not readily undergo a rearrangement analogous 

to that of 12. 

a!h 
FeCp FeCp 

10 11 12 13 

Evidence for ring opening of 5 to o-QDM 4 was obtained from a 

trapping experiment analogous to the one used to provide evidence for 

the production of o-xylylene by the ring opening of benzocy-

clobutene.lc.ll Compound 5 was heated in the presence of N-phenyl-
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maleimide (NPMI) in phenyl ether at 200 °C for 30 h. Compounds 8 

and 9, the Diels-Alder adducts of 4 and NPMI. were formed in an 11:1 

ratio as determined by NMR. Compound 8 was separated from this 

mixture in pure form in 13% yield; 9 was not isolated in pure form. 

The stereochemistry of 8 was established based on work by Bitterwolf, 

which has shown that the chemical shifts of hydrogens syn to the iron 

atom are deshielded relative to the anti hydrogens. 12 The tertiary hy­

drogens in the major isomer were 0.32 ppm downfield relative to the 

analogous hydrogens in the minor isomer. Based on this chemical shift 

difference the major isomer was assigned as shown 8 and the minor 

isomer was assigned structure 9. The stereochemistry of 8 is consis­

tent with endo addition of 7 to o-QDM 4. Production of these adducts 

provides strong evidence for the conversion of 5 to 4 under these con­

ditions. The conversion of 5 to 4 is an example of a ring-slippage reac­

tion 13 with the hapticity of the reacting ligand changing from to 

Ti^. It is uncertain whether a molecule of solvent coordinates with the 

iron atom of intermediate 4 to retain the inert gas electronic 

configuration or whether 4. which is coordinately unsaturated, 

remains intact long enough to react with NPMI. Reaction of 4 with 

NPMI to produce 8 and 9 involves changing the hapticity of the re­

acting ligand from to which also regenerates the aromatic fer­

rocene system. 



www.manaraa.com

10 

CONCLUSION 

FVP of 2-methylferrocenecarboxaldehyde N-amino-2-pheny-

laziridine hydrazone (6) affords ferrocenocyclobutene (5) in moderate 

yield. Thermolysis of 5 at 250 °C is believed to generate the parent fer­

rocene-based o-QDM (4), which is trapped NPMI to give a pair of 1 : 1 

adducts in a 11:1 ratio. The major product was isolated in 13% yield 

and identified as compound 8, whose structure was consistent with 

endo-addition of NPMI to the parent ferrocene-based o-QDM (5). 
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Methods and materials 

The pyrolysis apparatus has been previously described. 14 Melt­

ing points were determined on a Thomas Hoover melting point appa­

ratus and are uncorrected. NMR spectra were obtained on Nicolet 

NT-300 and Varian VXR-300 instruments, NMR spectra were ob­

tained on a Varian VXR-300 instrument. Chemical shifts are relative to 

the accepted chemical shift of the solvent peak unless otherwise 

noted. GCMS was performed on a Finnegan 4500 spectrophotometer 

with 70-eV EI after separation on a DB-1 capillary column. Exact mass 

determinations were performed on a Kratos 50 spectrophotometer. 

Capillary GC was performed on a Hewlett-Packard 5840A instrument 

using a DB-1 capillary column. All reactions were carried out under an 

argon atomsphere unless stated otherwise. Diethyl ether was distilled 

from Na/benzophenone ketyl. Methylene chloride was distilled from 

P2O5. Other reagents were purchased as reagent grade and used as 

received. 

2-Methylferrocenylmethanol. n-Butyllithium in hexanes (2.3 

M. 14 mL, 0.0320 mol) was added to a stirred solution of (dimethy-

lamino)methylferrocene (4.0 mL, 4.86 g, 0.020 mol) in ether (12 mL) 

at 28 °C over 15 min. The red color of the solution deepened 

somewhat during lithiation. After 4 h, methyl iodide (10 ml, 0.160 

mol) was added slowly and the mixture was stirred for at 16 h. The 

ether, hexanes, and excess methyl iodide were evaporated by warming 
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of the flask to ca. 40 °C, coupled with blowing argon through the flask. 

The remaining orange paste of 2-methyl(dimethylamino)methylfer-

rocene methiodide was added to aqueous NaOH (1.0 M, 150 mL), and 

the mixture was refluxed for 3 h under argon. After cooling, the mix­

ture was extracted with ether (3 x 30 mL). The combined ether por­

tions were washed with water (20 mL portions) until the aqueous layer 

was neutral to litmus. The ether solution was then washed with brine 

(3 X 30 mL). then dried {Na2S04). Filtration, followed by removal of 

the solvent under reduced pressure gave (2-methylferro-

cenyDmethanol (2.1690 g. 94%). 1H NMR (300 MHz, CEDE) 5 4.26 (dd, 

Jd = 23.2, Jd = 12.0 Hz. 2 H), 4.07-4.03 (m, 1 H), 3.93-3.90 (m, 1 H) 

3.88 (s, 5 H), 3.85 (t, J = 2.1 Hz, 1 H), 2.36 (br. s, 1 H ), 1.86 (s, 3 H). 

2-Methylferrocenecarboxaldehyde. Preparation was based 

on the method of Sokolov.15 (2-Methylferrocenyl)methanol (1.91 g, 

0.0082 mol) was dissolved in chloroform (80 mL) and then Mn02 (5.31 

g, 0.061 mol) was added. The mixture was stirred for 3 d and then fil­

tered through a medium frit. The filtrate was concentrated under re­

duced pressure and then chromatographed on neutral alumina with 

10% EtOAc in hexanes. The first major product fraction was collected 

and the solvent was removed under reduced pressure to give a dark 

red oil. GC and ^H NMR revealed a small amount of ferrocenecarbox-

aldehyde was present, but this was removed by a second chromatog­

raphy column. After removal of solvent under reduced pressure, 

2-methylferrocenecarboxaldehyde was obtained as a dark red oil (0.86 

g, 0.0038 mol, 46%). The ^H NMR spectrum was in excellent agree-
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ment with the one reported by Sololov: NMR (300 MHz, CDCI3) Ô 

10.10 (s. 1 H). 4.71-4.68 (m. 1 H). 4.51-4.49 (m. 1 H), 4.47 (t. J= 2.5 

Hz. 1 H). 4.20 (s. 5 H). 2.25 (s. 3 H). 

N-Phthalimidyl-2-phenylaziridine. Eschenmoser's method of 

preparation was used. 16 N-Aminophthalimide (8.10 g, 50 mmol) was 

added to a solution of styrene (67 mL. 0.580 mol) in CH2CI2 (300 mL). 

This mixture was stirred vigorously and lead tetraacetate (26.06 g, 

0.059 mol) was added gradually by powder addition funnel over 1 h. 

After the addition was complete, the mixture was stirred for 2 h, and 

then basic alumina (100 g) was added. The suspension was swirled and 

filtered through a pad of Celite. The solvent was removed and then 

ether (500 mL) was added. The salts were removed by extraction with 

water (3 x 50 mL), and then the organic layer was concentrated under 

reduced pressure. The product was chromatographed on silica gel 

(200 g ) with CH2CI2. Removal of the solvent followed by two recrystal-

lizations from CHCl3/pentane gave pale yellow needles of N-phthalim-

idyl-2-phenylaziridine (3.42 g, 0.013 mol, 26%): mp 147.9-149.8° C 

(lit.23 mp 152° C). The ^H NMR spectrum agreed well with that re­

ported by Eschenmoser. although he used CDCI3 as solvent: ^H NMR 

(300 MHz. CD2CI2) 5 7.80-7.70 (m. 4 H). 7.46-7.34 (m, 5 H), 3.56 (dd. 

Jd = 8.0, Jd = 5.9 Hz, 1 H), 2.90 (dd, Jd = 8.0. Jd = 2.5 Hz. 1 H). 2.75 

(dd. Jd = 5.9. Jd = 2.5 Hz. 1 H). 

N-Amino-2-phenylaziridine. This was prepared as described 

by Eschenmoser. 16 To a mixture of pentane (67 mL). hydrazine hy­

drate (16.7 mL), and water (1.7 mL), N-phthalimidyl-2-phenylaziridine 
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(1.7710 g, 0.00670 mol) was added. The suspension was stirred for 3 

h. Care was taken during stirring to avoid formation of an emulsion. 

The pentane layer was removed by pipet and saved. The aqueous layer 

was extracted with pentane (3 x 15 mL). The pentane portions were 

combined, dried (K2CO3), filtered and concentrated under reduced 

pressure to give N-Amino-2-phenylaziridine (0.7672 g 0.00572 mol, 

85%) as a colorless oil. The NMR spectrum agreed well with that 

reported by Eschenmoser, although he used CDCI3 as solvent: 

NMR (300 MHz. CD2CI2) 5 7.34-7.18 (m. 5 H). 3.70 (br. s. 2 H). 2.58 

(dd. J= 7.8. 4.6 Hz. 1 H). 1.99 (d. J= 4.6 Hz. 1 H). 1.97 (d. J= 7.8 Hz. 

1 H). 

2-Methylferrocenecarboxaldehyde N-(2-Phenylaziridine) Hydra-

zone (6). A modification of Eschenmoser's procedure was used. 16 

N-amino-2-phenylaziridine (0.1921 g. 0.00143 mol) was added to a so­

lution of 2-methylferrocenecarboxaldehyde (0.150 g. 0.00066 mol) in 

benzene (15 mL). The mixture was stirred for 30 h. The solvent was re­

moved and the resulting dark red oil was chromatographed on neutral 

alumina with 8% EtOAc in hexanes. The first major fraction was saved 

and the solvent was removed to give the hydrazone (0.1569 g. 0.00046 

mol. 70%) as a dark red oil. The product was isolated as a pair of di-

astereomers with very similar NMR chemical shifts. While some of the 

chemical shifts of these diastereomers coincided, others differed 

slightly. 1h NMR (300 MHz CD2CI2) S 8.55. 8.54 (two s. 1 H). 7.51-

7.31 (m. 5 H). 4.57-4.55 (m. 1 H). 4.32-4.30 (m. 1 H). 4.26 (t. J = 2.4 
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Hz, 1 H), 4.14, 4.13 (two s, 5 H), 3.07-3.01 (two dd. 1 H). 2.51-2.47 

(two dd, 1 H). 2.40-2.37 (two dd. 1 H). 2.15, 2.14 (two s, 3 H). 

Ferrocenocyclobutene (5). A typical procedure for the pyrol-

ysis of 6 is as follows: A sample of 6 (ca. 75 mg, 0.00022 mol) was 

placed in a Pyrex sample boat and the boat was placed in the sample 

head. The sample head joint was greased and then attached to the py-

rolysis tube which was preheated to 380° C. After evacuation of the ap­

paratus to ca. 6 X 10-5 torr, the sample head was heated to 65° C and 

then gradually increased to 95° C over 4-6 hours. After the pyrolysis 

was completed, the system was restored to atmospheric pressure with 

nitrogen, and the cold trap was removed. The lower white band 

(styrene) was dissolved in CS2 and the solution was removed from the 

trap by pipet and discarded. The yellow-orange upper band containing 

crude product was then removed in a similar manner, concentrated 

under reduced pressure, and chromatographed on neutral alumina 

with hexanes. The first major fraction was collected, and the solvent 

was removed under reduced pressure giving ferrocenocyclobutene (5) 

in 30-35% yield. Analysis by GC, GC/MS, and NMR confirmed the 

presence of small amounts of ferrocene [ca. 1.5%), methylferrocene 

[ca. 0.5%), 1,2-dimethylferrocene (ca. 0.9%), and an unidentified fer­

rocene derivative with a molecular weight of 225 which is probably 

l-cyano-2-methylferrocene (ca. 2%). but as these impurities were 

judged to be unreactive under thermolysis conditions, the product 

mixture was used for trapping experiments without additional purifi­

cation: m.p. 51.1-59.7° C.: m.p. 51.1-59.7 °C; ^H NMR (300 MHz. 
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C6D6) 5 3.99 (d. J = 2.1 Hz. 2 H), 3.94 (s. 5 H), 3.70 (t, J = 2.1 Hz, 1 

H). 2.93-2.83 (AA'BB' m, 2 H), 2.71-2.61 (AA'BB' m. 2 H); 13c NMR (75 

MHz, C6D6) 5 92.381, 70.114, 65.688, 61.976, 29.207; MS m/z (rel­

ative intensity). 212 (M+. 100), 184 (6.1). 134 (37). 121 (72). 91 (14), 

56 (53); HRMS m/z for C12Hi2Fe(M+) calcd. 212.02884, found 

212.02934. 

Ferrocenocyclobutene-N-phenylmaleimide Adducts (8, 9). Fer-

rocenocyclobutene (8.9 mg, 0.000042 mol), N-phenylmaleimide (15.1 

g, 0.0000872 mol), and 0.5 mL of phenyl ether were mixed in a thick-

walled tube. The contents were subjected to four freeze-thaw cycles (-

78° C to 30° C) under vacuum. The tube was sealed, immersed in a 

heating bath at 200° C for 30 hours, and then allowed to cool. A thin 

brown band, possibly due to decomposition products, and a small 

amount of orange precipitate were visible in the orange solution. The 

tube was opened and the orange solution was removed and saved. The 

orange precipitate from the tube was dissolved in methylene chloride 

and removed. The ^H NMR spectrum indicated that the precipitate 

contained two products in a 11:1 ratio. The solution from the tube was 

chromatographed on neutral alumina with hexanes in order to remove 

the phenyl ether. Acetone was used to elute the ferrocene products. 

Upon removal of solvent an orange powder was obtained. This orange 

powder was combined with the precipate product mixture and the 

combined mixture was reciystallized from toluene/hexane to give 2.1 

mg ( 0.0000055 mol, 13%) of orange needles which darkened at 185° 

C. The 1h NMR spectrum of the recrystallized product showed it to be 
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the major component of the 11:1 mixture. Comparison of the NMR 

spectrum of the recrystallized product with that of the crude mixture 

made it possible to assign the stereochemistry of the cycloaddition. 

The minor (exo) product was not isolated. The only detectable differ­

ences in the NMR spectrum were in the alkyl region. Integration 

shows the multiplets from the alkyl protons to be in a 1:1:1 ratio: 8: 

1h NMR (300 MHz. CD2CI2) 8 7.53-7.43 (m, 2 H). 7.43-7.37 (m. 1 H). 

7.21-7.17 (m. 2 H) 4.15 (d. J = 2.4 Hz. 2 H). 4.14 (s. 5 H). 4.03 (t. J = 

2.4 Hz. 1 H). 3.59-3.49 (ABC m, 2 H). 3.03-2.95 (ABC m, 2 H). 2.57-

2.49 (ABC m. 2 H); 13c NMR (75 MHz. CeHe) 6 178.912. 132.556. 

129.358. 128.864, 127.008. 83.183. 69.263. 66.545. 65.464. 41.028, 

24.170: MS m/z (relative intensity). 385 (M+. 100). 172 (15), 121 

(6.9), 121 (6.1). 113 (37). 103 (3.7). 101 (5.6). 56 (5.6); HRMS m/z for 

C22Hi9FeN02 (M+) calcd. 385.07648. found 385.07654. 9: ^H NMR 

(300 MHz. CD2CI2) 5 (phenyl and ferrocenyl proton signals are ob­

scured by the absorptions of 8) 3.34-3.28 (m). 3.30-2.95 (m). 2.57-

2.49 (m). 
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Figure A-1. NMR spectrum (300 MHz, CD2CI2) of N-amino-2-phenylaziridine hydrazone 
(6) (S: CHDCI2, W: H2O, H: high-boiling residue from hexanes, X: unidentified 
impurity). 
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NMR spectrum (300 MHz, CeDe) of fenrocenocyclobutene (5) (X: unidenti-
impurity). 
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Figure A-3. NMR spectrum (300 MHz, CgDe) of the ferrocenyl 

protons of ferrocenocyclobutene (5) (F: ferrocene, X: 
unidentified impurity). 
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Figure A-4. NMR spectrum (300 MHz, CeDe) of the AA'BB' quartet caused by the 
methylene protons of ferrocenocyclobutene (5). 
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Figure A-5. l^c NMR spectrum (75.5 MHz, CeD©) of ferrocenocyclobutene (5) (S: solvent). 
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Figure A 6. NMR Attached Proton Test (APT) spectrum (75.5 MHz, CgDe) of ferroceno-
cyclobutene (5) (positive peaks indicate CH2 groups, negative peaks indicate 
aromatic CH groups or quaternary carbons; quaternary carbon at ca. 92 ppm 
could not be observed, due to its low sensitivity to APT). 
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Figure A-8. NMR spectrum (300 MHz, CD2CI2) of the crude adduct of ferrocenocy-
clobutene and NPMI (8 and 9) (S; CHDCI2. W; H2O, T: tetramethylsilane, X: 
unidentified impurity). 
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A-9, 1h NMR spectrum (300 MHz, CD2CI2) of the ferro 

cenyl region of the crude adduct of ferrocenocy 
clobutene and NPMI (8 and 9). 
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Figure A-10. 1h NMR spectrum (300 MHz. CD2CI2) of the aliphatic region of the crude 
adduct of ferrocenocyclobutene and NPMI (8 and 9). 
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Figure A ll. NMR spectrum (300 MHz, CD2CI2) of the purified major adduct of ferro-
cenocyclobutene and NPMI (8) (S: CHDCI2. W: H2O, T: tetramethylsilane. A: 
acetone). 
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Figure A 12. NMR spectrum (300 MHz. CD2CI2) of the ferrocenyl and aliphatic regions 
of the major adduct of ferrocenocyclobutene and NPMI (8). 
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Figure A 13. NMR spectrum (75.5 MHz. CD2CI2) of the major adduct of ferro-
cenocyclobutene and NPMI (8). (S; CHDCI2). 
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paper 2. coupling of diradicals generated by thermal 

intramolecular hydrogen-atom transfers: 

cyclization of o-allyltoluene derivatives 
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introduction 

The gas-phase pyrolysls of tetralin (1) involves two major decom­

position pathways: (a) loss of ethylene to give benzocyclobutene (2) and 

styrene (3) and (b) loss of hydrogen to give 1,2-dihydronaphthalene (4) 

and naphthalene (5). 1-2 In addition to these major products there are 

many other minor products including o-allyltoluene (6) and indene 

(7).1'2 and 2-methylindan (8).l 

5 6 7 8 

While studying the effects of pyrolysis temperature on the yields 

of products obtained by the flash vacuum pyrolysis (FVP) of tetralin (1), 

we noted that as the pyrolysis temperature increases, the yield of o-al­

lyltoluene (6) decreases but the yield of indene (7) increases. To check 

the possibility that 6 was the source of 7 we studied the FVP of 6 it­

self. ̂  We found that at ca. 700-800 °C. 2-methylindan (8) is the major 

product, which differs from results previously reported for the 

gas-phase reactions of 6.4.5 At higher temperatures (900 °C), 7 is the 

major product, presumably arising by secondary pyrolysis of 8. 

We propose that 8 is produced by a two-step mechanism involv­

ing diradical 9 which is formed by an intramolecular thermal hydrogen 
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OCT-OO- — 00 
Hz 

6 9 8 7 

atom transfer, a novel hydrocarbon reaction. To date, the only exam­

ples of formation of diradicals or radical pairs by transfer of a hydro­

gen atom 

RH R'H ^ R* •R'Hn 
! : ! : 

have been intramolecular photochemical® reactions and a few inter-

molecular thermal reactions.7.8.9 There is only one report which pre­

sents evidence for the formation of a diradical by thermally-induced 

transfer of a hydrogen atom and this is for the cyclization of an 

organosilicon compound. 10 

In this study, we carried out the FVP of o-allyltoluene (6) in order 

to investigate the conversion to 7 and 8 and to examine the product 

mixture for products that would offer support for the existence of di­

radical 9. We also pyrolyzed a number of substituted derivatives of 6 

containing methyl groups on the double bond or the benzylic methyl 

group (A), with the anticipation that increased substitution would lead 

to formation of by-products that could offer additional support for exis­

tence of diradical intermediates. We also expected the methyl groups 

to accelerate the reaction by leading to more stable radicals. In addi­

tion, we explored the effect of chain length (B) on the reaction to 
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R/ R3 

a 

Rl = Me and R2 = R3 = H 

b 

n= 2, 3 

or R2 and/or R3 = Me, Ri = H 

determine more about the scope and limitations of the hydrogen trans­

fer/diradical coupling reaction. We also carried out the thermolysis of 

o-methallyltoluene (10) in solution in order to its solution-phase 

chemistry. 
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results 

A summary of the product studies of the flash vacuum pyrolysis 

FVP of o-allyltoluene (6) at 0.10 torr (700-900 °C) is given in Table 1.3 

The major products are 2-methylindan (8) and indene (7). Small 

amounts of o-(l-propenyl)toluene (11) are produced at 800-900 °C. 

Low yields of tetralin (1). 1,2-dihydronaphthalene (4), and naphthalene 

(5) are also produced. 

o-Methallyltoluene (10) was pyrolyzed under conditions similar 

to those for used 6. It was expected that the tertiary radical site of the 

proposed diradical intermediate (12) would enhance the stability of 

the intermediate, resulting in a more facile reaction. The product 

studies of the FVP of 10 are summarized in Table II. The major product 

at 700-850 °C is 2,2-dimethylindan (13). Small amounts of 

l-(o-tolyl)-2-methylpropene (14). 2-methylindene (15) and 3-methylin-

dene (16), 5, and 7 are formed. At 900 °C. the major products are 5 

and 7. accompanied by small amounts (ca. 4-10 %) of 8 and 13-16. 

2.2-Dimethylindan (13) was pyrolyzed in order to determine 

which products from the FVP of 10 are due to secondary pyrolysis of 

13. The FVP of 13 at 900 °C affords products (Table III) similar to the 

mixture produced by the FVP of 10 at 900 °C; the major products are 

5 and 7. along with low yields (ca. 5-11 %) of 8 and 13-16. 

10 12 
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Table I. Products and recovered starting material from the FVP of 
o-allyltoluene (6) at various temperatures 

entry 700 °C 

yield, % c 

800 °C 900 °C 

o-allyltoluene (6) ^ 90.9 45.4 6.6 

2-methylindan (8) 4.1 25.3 14.1 

indene (7) 0.8 6.9 32.0 

1,2-dihydronaphthalene (4) 0.6 1.4 1.1 

tetralin (1) 0.3 2.7 3.3 

o-(l-propenyl)toluene (11) — 3.1 3.7 

naphthalene (5) 1.0 8.1 

other products 3.3 e 14.2 e 31.1 e 

recovery / 83.3 88.8 72.8 

conversion 9 9.1 54.6 93.4 

FVP conditions: system pressure = 0.10 torr, sample temper­
ature = 0 °C. b Amounts determined by GC with a known quantity of 
biphenyl added as standard. Data represent the average of triplicate 
runs. Products identified by comparison with authentic samples by 
retention time and GCMS are indicated by name. Products identified 
by GCMS only are indicated by code; XY-nnn, where 'X' corresponds 
to the system where first observed (T = 1,1 A = 6, M = 10. E = 17, C 
= 21. 'V to the individual unknown product (A, B, C, etc.), and 'nnn' 
to the nominal mass. ^ Moles of product divided by total moles of re­
covered material. ^Starting material (yield. %): o-allyltoluene (96.5), 
m/p-allyltoluene (1.9), toluene (0.6), unidentified product TL-128 
with formula CioHg (0.4), naphthalene (0.4), 2,2'-dimethylbiphenyl 
(0.2). ® See Table A-I in Appendix 2 of Paper 2, this dissertation, for a 
more detailed analysis. /Total moles of recovered material divided by 
moles of starting material used. 9 Total moles of recovered material 
minus moles of recovered starting material divided by total moles of 
recovered material. 
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Table H. Products and recovered starting material from the FVP of 
o-methallyltoluene (10) at various temperatures 

yield, % c 

entry 700°C 800 °C 850 °C 900 °C 

o-methallyltoluene (10) ^ 89.6 30.2 22.2 6.2 

2,2-dimethylindan (13) 4.0 31.7 24.1 9.8 

1 -(o-tolyl) -2-methylpropene (14) 0.7 6.0 6.6 4.7 

2-methylindene (15) 0.4 3.5 4.4 4.0 

3-methylindene (16) 0.2 3.3 4.5 5.2 

naphthalene (5) 0.1 4.1 6.6 18.8 

indene (7) — 2.7 5.9 16.6 

other products 4.5 e 15.6 e 20.9 e 23.3 e 

recovery / 89.0 83.8 81.0 67.3 

conversion 9 10.4 69.8 77.8 93.8 

^ See Table I, note a. ̂  See Table I, note fa. ^ See Table I, note c. 
^ Starting material (GC assay, mol %): o-methallyltoluene (94.5) 
toluene (3.3), unidentified product MM-146 with formula CiiHi4 
(1.4), unidentified product ME-146 with formula C11H14 (0.2), 
2,2'-dimethylbiphenyl (0.2). 1-methyl-1-phenylpropene (0.2), propy-
Ibenzene (0.1), other minor impurities (total of 0.1). ® See Table A-II 
in Appendix 2 of Paper 2, this dissertation, for a more detailed 
analysis. /See Table I, note /. 9 See Table I, note g. 
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Table III. Products and recovered starting material from the FVP 
of 2,2-dimethylindan (13) at 900 °C 

entry yield, 

naphthalene (5) 24.0 

indene (7) 21.7 

2,2-dimethylindan (13) ̂  10.7 

3-methylindene (16) 7.4 

2-methylindene (15) 5.4 

l-(o-tolyl)-2-methylpropene (14) 5.4 

o-methallyltoluene (10) 4.8 

other products 26.0 ^ 

recovery/ 60.4 

conversion 9 89.3 

^ See Table I, note a. ^ See Table I, note fa. c See Table I, note c. 
^ Starting material (GC assay, area %): 2,2-dimethylindan (97.2), 
unidentified minor impurities, none of which are present in the 
pyrolysis product mixtures (2.8). ®See Table A-III in Appendix II-2 of 
Paper 2, this dissertation, for a more detailed analysis. /See Table I, 
footnote /. 9 See Table I, footnote g. 
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The FVP reactions of o-allylethylbenzene (17) were also explored. 

We believed that the methyl group would stabilize the benzylic radical 

site of the predicted diradical intermediate (18) thus favoring the re­

action at lower temperatures. 

or 00" 
17 18 

Pyrolysis of 17 was carried out at 0.1 torr (700-800 °C). At 700 

°C, 15, 16. and E-(o-propenyl)ethylbenzene (19), as well as small 

amounts of ED-146 (see Table I, note b for explanation of nomen­

clature) are produced. At 750-800 °C. the major products are 8 and 5. 

Compounds 15, 16. and 19, o-propylstyrene (20), and many minor 

products are also produced. These results are presented in Table IV. 

In addition, we pyrolyzed o-allylcumene (21), anticipating that 

the predicted diradical intermediate (22) would be sufficiently 

21 22 

stabilized to allow reaction at even lower temperatures than 17. FVP of 

21 was carried out at 0.10 torr (700-750 °C). At 700 °C, low yields of 

5, 7, and 16 are obtained, along with small amounts of compounds 

CC-160. CG-160 (see Table I, note b for explanation of nomenclature). 

At 750 °C. larger amounts of 5. 7, 16, and many minor compounds are 

formed. These results are presented in Table V. 
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Table IV. Products and recovered starting material from the FVP 
of o-allylethylbenzene (17) at various temperatures 

entry 700 °C 

yield, 

750 °C 800 °C 

o-allylethylbenzene (17) ci 74.2 48.5 14.6 

AED-146 [C11H14] 3.9 3.6 2.6 

indene (7) 1.9 6.9 22.8 

3-methylindene (16) 1.8 4.7 6.7 

naphthalene (5) 1.6 5.7 19.3 

2-methylindene (15) 1.2 3.6 4.5 

E-(o-propenyl) ethylbenzene (19) 1.4 2.2 2.1 

o-propylstyrene (20) 1.7 3.6 

other products 9.8 e 16.9 e 19.8 e 

recovery / 78.5 78.7 70.7 

conversion 9 25.8 51.8 85.4 

^ See Table A-I, note a. ^ See Table I, footnote b. c See Table I, 
note c. Starting material (GC assay, area%): o-allylethylbenzene 
(96.5), unidentified product EL (1.3), 2,2'-diethylbiphenyl (1.2), 
ethylbenzene (0.8), unidentified product EI (0.5), o-bromoethylben-
zene (0.4). ^ See Table A-IV in Appendix 2 of Paper 2, this disserta­
tion, for a more detailed analysis. /See Table I, footnote f. 9 See Table 
I, footnote g. 
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Table V. Products and recovered starting material from the FVP 
of from the FVP of o-allylcumene (21) at various temper­
atures 

yield ,%<^ 

entry 700 °C 750 °C 

o-allylcumene (21) d 53.5 19.9 

naphthalene (5) 5.1 17.7 

CC-160 [C12H16] 4.4 3.4 

3-methylindene (16) 3.6 8.2 

CG-160 IC12H16] 2.5 5.1 

indene (7) 1.7 6.6 

other products 29.8 e 39.1 e 

recovery f 83.4 73.2 

conversion 9 46.5 80.1 

^ Amounts determined by GC with a known quantity of 
biphenyl added as standard. ^ Amounts determined by GC with a 
known quantity of biphenyl added as standard. Data for 700 °C rep­
resent the average of duplicate runs. Data for 750 °C represent the 
average of triplicate runs. ^ See Table I, note c. Starting material 
(GC assay, area%): o-allylcumene (91.8), 2,2'-diisopropylbiphenyl 
(3.2), unidentified product CP (1.8), cumene (0.7), unidentified prod­
uct CJ (0.6), unidentified product CF-160 with formula C12H16 (0.5), 
unidentified product OR (0.5), unidentified product OR-160 with 
formula C12H16 (0.4), unidentified product OS (0.2), unidentified 
product 01-144 with formula CiiHi2 (0.2). ^ See Table A-V in 
Appendix 2 of Paper 2, this dissertation, for a more detailed analysis. 
/See Table I, footnote f. 9 See Table I, footnote g. 
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The effect of the length of the alkyl chain connecting the double 

bond and the aromatic ring on the ease of hydrogen-atom transfer was 

explored through pyrolysis of o-(3-butenyl)toluene (23) and o-(4-pen-

tenyl)toluene (24). Hydrogen-atom transfer and diradical coupling 

occurred should produce 2-methyltetralin (25) and p-methylben-

zosuberane (26), respectively. 

The FVP of o-(3-butenyl)toluene3 (23) at 0.1 torr (700-900 °C) 

produces good yields [ca. 40%) of l,2-di(o-tolyl)ethane (27) at 700-800 

°C. At 900 °C. significant amounts (ca. 10-20%) of o-xylene (28), benzo-

cyclobutene (2), o-ethyltoluene (29). and styrene (3) are formed. No 

2-methyltetralin (25) was detected. These results are presented in 

Table VI. 

FVP of o-(4-pentenyl)toluene3 (24) was carried out at 0.01 torr 

(600-800 °C). The major product at 700-800 °C is o-methylstyrene 

(30). Numerous side products, each produced in small amounts, are 

formed at high conversion (900 °C). No p-methylbenzosuberane (26) 

was detected. These results are presented in Table VII. In addition 

to our studies of gas-phase reactions of these compounds, we explored 

the solution-phase reactions of 10. 

The results of the thermolysis of 10 in phenyl ether (240 min, 

400°C) are presented in Table VIII. At a higher starting concentration 

23 24 25 26 
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Table VI. Products and recovered starting material from the FVP 
of o-(3-butenyl)toluene (23) at various oven tempera­
tures 

entry 700 °C 

yield. % ^ 

800 °C 900 °C 

o-(3-butenyl)toluene (23) ^ 64.2 41.7 15.9 

l,2-di(o-tolyl)ethane (27) 34.4 39.4 7.6 

o-xylene (28) 0.4 4.7 18.6 

benzocyclobutene (2) 0.4 3.5 15.2 

o-ethyltoluene (29) — 3.0 10.4 

styrene (3) — 0.5 6.8 

other products 0.6 e 7.3 e 25.5 e 

recovery f 97.8 88.7 110.0 

conversion 9 35.8 58.3 84.1 

^ See Table I. note a. ^ See Table I, note b. ̂  See Table I, note c, 
d Starting material (yield. %): o-(3-butenyl)toluene (100.0). ® See 
Table A-VI in Appendix 2 of Paper 2, this dissertation, for a more de­
tailed analysis. /See Table I, note /. 9 See Table I, note g. 
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Table VII. Products and recovered starting material from the FVP 
of o-(4-pentenyl)toluene (24) at various oven tempera­
tures 

yield, % ^ 

entry 600 °C 700 °C 800 °C 

o-(4-pentenyl)toluene (24) d 90.4 52.9 3.0 

o-methylstyrene (30) 1.5 30.6 59.8 

other products 8.1 e 16.5 e 37.0 e 

recovery f 96.2 86.6 70.4 

conversion 9 9.6 47.1 97.0 

^ FVP conditions: see Table I, note a. b See Table I, note b. 
csee Table I, note c. ^ starting material (yield, %): o-(4-pentenyl)tol-
uene (92.4). 2,2'-dimethylbiphenyl (7.6). unidentified impurity PC 
which constitutes <0.35% total area by GC. ^ See Table A-VII in 
Appendix 2 of Paper 2, this dissertation, for a more detailed analysis. 
f See Table I, note f. 9 See Table I, note g. 
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of 10, the major product is 14, the double-bond isomer of 10. Small 

amounts of 5, 13, 15, and 16 are also formed. When the initial concen­

tration of 10 is lowered five-fold, the conversion to 14 is lower. The de­

pendence of conversion upon concentration suggests that a chain 

mechanism is responsible for the conversion from 10 to 14. The per­

centages of 5, 13, 15, and 16 do not change significantly. 
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Table Vin. Products and recovered starting material from the 
solution-phase thermolysis of o-methallyltoluene (10) 
in phenyl ether (240 min, 400 °C) at various concen­
trations ^ 

yield, %c 

entry 0.0724 0.0145 
mol L"1 mol L"1 

1 -(o-tolyl) -2-methylpropene (14) 57.7 26.7 

o-methallyltoluene (10) ^ 14.0 50.0 

3-methylindene (16) 6.1 7.3 

2-methylindene (15) 4.5 2.2 

naphthalene (5) 4.7 1.2 

2.2-dimethylindan (13) 3.6 3.9 

other products 9.4 c 8.7 c 

CI Thermolysis conditions: 0.5 mL of degassed phenyl ether solution 
was sealed in a glass tube, and then is heated to 400 °C for 240 min­
utes. b Starting material (GC assay, mol%): o-methallyltoluene (94.5) 
toluene (3.3), unidentified product TM-146 with formula C11H14 
(1.4), unidentified product TE-146 with formula C11H14 (0.2), 
2,2'-dimethylbiphenyl (0.2). 1-methyl-1-phenylpropene (0.2), propyl-
benzene (0.1), other minor impurites (total of 0.1). ^ See Table A-VIII 
in Appendix 2 of Paper 2, this dissertation, for a more detailed analy­
sis. 
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discussion 

The products of the FVP of o-allyltoluene (6). o-methallyltoluene 

(10), 2,2-dimethylindan (13), and o-allylethylbenzene (17) offer consid­

erable support for the existence of diradical intermediates during py-

rolysis of these hydrocarbons. FVP of 6 affords 2-methylindan (8) 

whose formation can be explained by the coupling of 9, the predicted 

diradical intermediate resulting from hydrogen-atom transfer, 

o-(l-Propenyl)toluene (11), which could arise by intramolecular dis-

proportionation of 9, is also observed.5.11 Indene (7) probably arises 

by loss of the methyl group from 8, followed by loss of a p-hydrogen. 

The formation of tetralin (1), which is formed in low yields, also 

offers support for the proposed mechanism. Hydrogen transfer to the 

internal carbon of the double bond would give diradical 31, which 

could undergo coupling to give 1. The formation of 1,2-dihydronaph-

thalene (4), and naphthalene (5) is probably at least partially due to 

secondary pyrolysis of 1. 

00- ~00 

00—oo 
8 7 

11 

6 31 1 
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Further evidence for the existence of diradical intermediates was 

obtained through the FVP of 10 (Table II). 2,2-Dimethylindan (13), the 

major product of FVP of 10, is believed to arise from coupling of dirad­

ical intermediate 12. Intramolecular disproportionation of 12 would 

lead to either starting material or to l-(o-tolyl)-2-methylpropene (14). 

OCx-OO 
Oy= " 

10 I! 0^ 

The formation 2-methylindene (15) can be explained by loss of a 

methyl group and a J3-hydrogen from 13. 3-Methylindene (16) is prob­

ably formed from 15 by a series of 1,5 hydrogen and 1,5 methyl shifts 

involving intermediates 32-34, which is reasonable based on the 

known interconversion of phenyl substituted indenes. 12 

14 

15 32 

33 

16 34 
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The FVP of dimethylindan (13) at 900 °C gives 10 and 14 as mi­

nor products, with 5. 7, 15, and 16 being formed in larger amounts. 

The formation of 10 and 14 can be explained by cleavage of the Ca-Cp 

bond, affording diradical 12, which then undergoes intramolecular dis­

proportionation to give 10 and 14. The reversibility of the conversion of 

10 from 13 further supports the existence of diradical 12. 

10 

" OCT 
14 

The FVP of o-allylethylbenzene (17) produces several compounds 

that are consistent with the generation of diradical intermediate 18. 

Once formed by hydrogen-atom transfer, diradical 18 could undergo 

four reactions affording distinct products: coupling to give cis- and 

trans- 2,3-dimethylindans (35 and 36, respectively), or three in­

tramolecular disproportionation reactions to give either starting mate­

rial (17), E-(o-propenyl)ethylbenzene (19), or o-propylstyrene (20). 

00<=0CJC 
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35 36 

17 18 19 

20 

Analysis by GC (Table IV), GCMS, and NMR clearly shows 

compounds 19 and 20^3 are formed during the FVP of 17. Intramolec­

ular disproportionation of 18 readily explains their formation. The 

presence of dimethylindans 35 and 36 could not be firmly established, 

but it is possible that some minor products, such as ED-146, could be 

35 or 36. Unfortunately, these minor products are formed in such 

small amounts that they could not be clearly identified by GC or 

NMR, although GCMS shows that these products are isomeric with 17. 

The high yield of 7 and the substantial amounts of 15 and 16 

that are formed can be explained by loss of the a-methyl group to give 

radical 37 followed by loss of either the p-methyl group to give 7 or the 

P-hydrogen to give 15, which can then isomerize to 16, as previously 

indicated. The loss of the a-methyl group should be relatively facile, 

which could explain the lack of readily identifiable amounts of 35 

and/or 36 in the product mixtures. 
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16 

15 

In addition to products that support the existence of diradical in­

termediates, formation of naphthalene (5) and indene (7) is prominent 

in most of these pyrolyses, particularly at higher temperatures. There­

fore. consideration has been given to their formation. Likely routes to 5 

and 7 are described below. 

The formation of 5 during the FVP of 6 is probably partially due 

to secondary pyrolysis of 1. The route from 10 to 5 could involve ben-

zofulvene (38). which is detected in the pyrolysis mixture (ca. 1%). The 

interconversion of 2-methylindene (15) and 3-methylindene (16). is 

believed to proceed through 1-methylindene (33). Loss of hydrogen 

would give 38. which rearranges to naphthalene. 1 ̂  

o 

15 38 5 

Formation of 5 during the FVP of 17 could also be by way of ben-

zofulvene. but it is also possible that 5 could arise as a result of «-frag­

mentation of 17. Compound 17 would give o-allylbenzyl radical (39) 
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which could cyclize, giving the 2-tetryl radical (40). Loss of a 

P-hydrogen to give 4 followed by further dehydrogenation gives 5.15 

OCT 00"= 00'— 
17 18 39 

Indene (7) is another major product from the FVP of 6. 10, 17. 

and 21 at high temperatures. Some possible routes to 7 have been de­

scribed above. The route from 13 to 7 is more uncertain, but a possi­

ble route involves stepwise loss of a methyl group, followed by a 1,2 

hydrogen shift to give radical 37 and then loss of the p-methyl group 

from 37 to give 7. 

0O< —00—0> — ' 
13 41 37 

Both naphthalene and indene are major products formed in the 

FVP of o-allylcumene 21 (Table V). Unfortunately, the large amount of 

lower molecular-weight products resulting from a-fragmentation ob­

served during pyrolyis makes it difficult to determine which products 

result from a-fragmentation and which, if any, result from secondary 

reactions of cyclized products resulting from hydrogen-atom transfer. 

Brown has observed formation of 5 and 7 during pyrolyses which re­

sult in formation of polymethylated indenes,!^ so formation of 5 and 7 

during the pyrolysis of 21 is not unexpected. The pyrolysis of 17 and 

21 clearly showed that «-fragmentation is a major pathway if a-methyl 

groups are present. 
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We investigated the effect of chain length on the hydrogen-atom 

transfer reaction and cyclization. o-(3-Butenyl)toluene (23) and 

o-(4-pentenyl)toluene (24) were pyrolyzed. In the FVP of 23, the main 

reaction is homolytic cleavage of the weak benzylic-allylic carbon-car­

bon bond (Table VI). The dimerization of the o-methylbenzyl radical 

(41) which is produced from this bond cleavage, results in the forma­

tion of l,2-di(o-tolyl)ethane (27). The allyl radicals (42) should dimer-

ize to form biallyl (43), but none was detected. At 900 °C, the major 

42 

23 

+ 42 27 

43 

43 44 

products are benzocyclobutene (2), styrene (3), and o-xylene (28), 

o-ethyltoluene (29). Analogous results for the FVP of 4-phenylbutene 

(44) were observed by Ondruschka and co-workers. It is likely that 

2 is formed by closure of o-xylylene (45), which would result from the 

loss of a hydrogen atom from 42. Rearrangement of 2 leads to 

formation of styrene. Compound 28 is probably formed by hydrogen 

abstraction by 42, and the route to 29 is uncertain. AH values 

The main product from the pyrolysis of o-(4-pentenyl)toluene 

(24) (Table VII) is o-methylstyrene (30) which is probably formed, along 

with propene (46), by a retro-ene reaction. Analogous results for the 
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FVP of 4-phenylpentene (47) were observed by Ondruschka and 

co-workers. 

24 30 46 

In addition to FVP studies, we investigated the solution-phase 

reactions of 10. It is clear that the solution-phase chemistry of 10 at 

400 °C (See Table Table VIII) differs markedly from its gas-phase reac­

tions. At a starting concentration of 10 of 0.0724 mol L"l, the major 

product is double-bond isomer 14. Some cyclized product, 

2,2-dimethylindan (13) as well as its secondary products such as 

2-methyl- (15) and 3-methylindene (16) were also formed. At a starting 

concentration of 10 of 0.0142 mol L"l, the yield of 14 is considerably 

lower, and the yield of 13 is slightly higher. The dependence of the 

formation of 14 on the concentration of 10 shows that the reaction is 

not unimolecular in nature. We propose that a radical chain mecha­

nism is responsible for this isomerization, 

OCY-s-00̂ -̂  OCT 
10 48 14 ' 

etc. 

AH values for the conversions of 6, 10, 17, and 21 into their 

respective diradicals were calculated using Benson's method. 19 The 
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AH values for the conversions of 6 to 9, 10 to 12. 17 to 18. and 21 to 

22 were estimated to be 45.0, 44.0, 41.5, and 37.9 kcal mol'l, 

respectively. Assuming that these calculated AH values lie within 2-3 

kcal mol'l of their corresponding AH$ values, which is reasonable, 

given the high energy of the diradical intermediates, the range of AH* 

values is ca. 40-47 kcal mol" 1. This range of AH$ is readily accessible 

at 700-900 °C. 

We also attempted to estimate AG^ values for these conversions 

these approximations through use of Scheiss'20 method. By plotting % 

conversion vs. temperature using the data in Tables I, II, and IV-VII, 

the temperature of 50% conversion (T5o%) was determined for 6, 10, 

17, 21, 23, and 24 to be 794, 783, 720, 705, 761, and 697 °C, 

respectively. (See Appendix 3 for details) AG^ values for bond cleavage 

of 23 was estimated from activation parameters obtained for homolytic 

cleavage of biallyl^l, and AG^ for the retro-ene reaction of 24 was 

estimated from activation parameters obtained in the retro-ene reac­

tion of l,6-heptadiene.22 The AG^ values for conversion of 23 and 24 

were calculated to be inversely related to their respective T50% value, 

rather than the direct relation that is expected. The discrepancy is 

probably due to uncertainties in the calculations, as well as variance of 

the oven temperature throughout the heating zone. However, the 

trends in the T50% values for the conversions of 6, 10. 17. and 21 are 

reasonable, considering the increasing substitution and stability of the 

diradicals being formed. 
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conclusion 

Flash vacuum pyrolysis (FVP) of o-allyltoluene (6), o-methallyl-

toluene (10), and o-allylethylbenzene (17) give a number of products 

whose formation is consistent with the existence of diradical interme­

diates produced by intramolecular hydrogen-atom transfers. AH^ val­

ues for the diradical intermediates are estimated to be ca. 40-47 kcal 

mol'l, which are easily accessible at ca. 700 °C. 

Some substantial limitations to the hydrogen-atom transfer reac­

tion were revealed during the course of this study. The presence of 

methyl groups in the benzylic position, such as in o-allylethylbenzene 

(17) and o-allylcumene (21). causes a-fragmentation to become com­

petitive with hydrogen-atom transfer. 

The role of chain length in these cyclizations is critical, as well. 

FVP of o-(3-butenyl)toluene (23) affords products resulting from cleav­

age of the weak Ca-CP bond, and FVP of o-(4-pentenyl)toluene (24) ap­

pears to result in a retro-ene reaction rather than the hydrogen-atom 

transfer. 

In solution phase, 10 undergoes rearrangement to 12, instead of 

cyclization. A radical chain mechanism is proposed for the rearrange­

ment. 
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EXPERIMENTAL 

Methods and materials. 

Some general methods 1 and the pyrolysis apparatuses have 

been described previously. NMR spectra were obtained on a 

Nicolet NT-300 instrument, NMR spectra were obtained on a 

Varian VXR-300 instrument. Chemical shifts are relative to tetram-

ethylsilane or the accepted chemical shift of the solvent, IR spectra 

were obtained on a Digilab FTS-7 spectrophotometer. GCMS was 

performed on a Finnegan 4500 spectrophotometer with 70-eV EI after 

separation on a DB-1701 capillary column or on a Finnegan Magnum 

spectrophotometer with 70-eV EI after separation on a DB-5 capillary 

column. Exact mass determinations were performed on a Kratos 50 

spectrophotometer. Combustion analyses were performed by 

Galbraith Laboratories, Inc. 

o-Allyltoluene (6).3 o-Allyltoluene (6) was prepared by a previ­

ously published procedure.5 iR NMR (CDCI3) 5 7.12 (s, 4 H), 5.94 (qt. 

Jq = 10,3 Hz. Jt = 6.4 Hz. 1 H). 5,04 (dq. Jd = 10.1 Hz. Jq = 1.6 Hz. 1 

H). 4.98 (dq. Jd = 17.0 Hz. Jq = 1.7 Hz. 1 H). 3.36 (dq. Jd = 6.3 Hz. Jt 

= 1,6 Hz. 2 H). 2,28 (s. 3 H) [lit,2b 1h NMR (CCI4) 5 6,94 (s. 4 H). 5,79 

(qt, Jq = 11.3 Hz. Jt = 6.5 Hz. 1 H). 4.93 (m. I H). 4.79 (dq. Jd = 11.3 

Hz. Jq = 2.1 Hz. 1 H). 3.24 (dt. Jd = 6.0 Hz. Jt = 1.8 Hz. 2 H). 2,20 (s. 

3 H)l; GCMS m/e (% base peak) 132 (77,5). 117 (100). 115 (42,3). 91 

(35.6). 65 (31.6) [lit.2b MS (50 eV) m/e 132 (parent). 117 (base)]. 
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o-Methallyltoluene (10). o-Methallyltoluene (10) was prepared 

in 26% yield from o-tolylmagnesium bromide and methallyl chloride 

by a method patterned after Kurd's procedure:22 1h NMR (300 MHz, 

CD2CI2) 5 7.18-7.10 (m. 4 H). 4.84-4.80 (m, 1 H)). 4.52-4.50 (m, 1 H)). 

3.32 (s. 2 H). 2.27 (s. 3 H). 1.74 (s. 3 H); 13C NMR (75.5 MHz, CD2CI2) 

5 144.9, 138.3, 137.3, 130.4, 130.1, 126.6, 126.1, 111.5, 42.0, 22.8, 

19.5; IR (thin film) v 3075, 3019, 2970, 2916, 1650, 1494, 1446, 

1375, 891 cm-l; GCMS (70 eV) m/e (% base peak) 146 (57.6), 131 

(100), 129 (16.1), 128 (17.3), 116 (14.5), 115 (24.0), 105 (11.4), 91 

(35.0), 77 (10.4): HRMS m/z for C11H14 (M+) calcd. 146.10955, found 

146.10932. 

2,2-Dimethylindan-l-one. This was prepared based on the 

previously published procedure.24 1h NMR Ô 7.69-7.60 (m, 2 H), 

7.54-7.47 (m, 1 H), 7.45-7.36 (1 H, m), 3.02 (s, 2 H), 1.17 (s, 6 H) 

2,2-Dimethylindan (13). Preparation was based on the previ­

ously published procedure.25 1h NMR Ô 7.16-7.02 (m, 4 H), 2.69 (s, 4 

H), 1.12 (s, 6 H): GCMS (70 eV) m/e (% base peak) 146 (43.1), 131 

(100), 115 (15.2), 91 (26.3). 

o-AUylethylbenzene (17). o-Allylethylbenzene (17) was pre­

pared in 31% yield by a method patterned after Kurd's procedure:22 

Ik NMR Ô 7.19-7.09 (m, 4 K), 5.97 (ddt, Jd = 16.9 Hz, Jd = 10.3 Hz, Jt 

= 6.5 Hz. 1 H), 5.03-4.91 (m , 2 H), 3.41 (dt, Jd = 7.31 Hz, Jt = 1.5 Hz, 

2 H), 2.65 (q, J= 7.5 Hz. 2 H), 1.18 (t, J= 7.5 Hz, 3 K); 13c NMR (75.5 

MHz, CD2CI2) 5 142.7. 138.0. 137.9, 129.8, 128.7, 126.8, 126.2, 

115.6, 37.3, 25.9, 15.4; IR (thin film) v 3060, 3014, 2965, 2930, 2870, 
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1640, 1600, 1485, 1450, 1430, 990. 912 cm-l; GCMS (70 eV) m/e (% 

base peak) 146 (24.1). 145 (16.1), 131 (100). 129 (15.0). 128 (12.1), 

117 (41.7). 116 (21.5). 115 (35.0), 91 (5.4), 89 (5.2); KRMS m/z for 

CiiHi4 (M+) calcd. 146.10955, found 146.10926. Anal. Calcd for 

C11H14: C. 90.35; H. 9.65. Found: C. 88.99; H. 9.66 

l-(o-Propylphenyl)ethanol. Preparation was patterned after 

Seebach's method.26 employing propyl bromide as the electrophile. 

l-(o-Propylphenyl)ethanol was obtained in 3% yield as a clear oil: 

NMR 6 7.55-7.47 (m. 1 H). 7.19-7.07 (m. 3 H). 5.16-5.05 (m, 1 H), 

3.974 (d, J= 3.9 Hz. 1 H), 2.65-2.56 (m, 2 H), 1.73-1.53 (m. 2 H), 1.37 

(d. J = 6.4 Hz, 3 H), 0.96 (t. J = 7.3 Hz. 3 H) 

l-(o-Propylphenyl)ethyl acetate. Treatment of l-(o-propy-

lphenyl)ethanol with acetyl chloride in ether and triethylamine gave 

1 -(o-propylphenyl)ethyl acetate as a clear oil in 55% yield. ^H NMR Ô 

7.44-7.36 (m, 1 H), 7.22-7.11 (m, 3 H), 6.09 (q. J = 6.5 Hz. 1 H). 2.75-

2.55 (m. 2 H). 1.99 (s. 3 H). 1.73-1.53 (m. 2 H). 1.67 (d. J = 6.6 Hz. 3 

H), 0.97 (t, J = 7.3 Hz. 3 H) 

o-Propylstyrene (20). 1 -(o-Propylphenyl)ethyl acetate was py-

rolyzed at 600° C and 0.1 torr. The pyrolysate was dissolved in ace-

tone-d6 and neutralized. ^H NMR spectroscopy showed peaks that 

were consistent with formation of o-propylstyrene (2 0) and 

E-2-(l-propenyl)-toluene (19) in a ratio of about 4 : 1. Comparison of 

the GC retention times and GCMS fragmentation patterns of 19 and 20 

clearly established that both are produced during the FVP of 17. 

Compound 20 was also identified by comparision of ^H NMR spec­
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tra:27 E-2-(l-propenyl)-toluene (19): NMR 5 (aryl protons and 

methylene protons are obscured due to overlap) 6.68 (dt. Jd = 15.5 Hz, 

Jt = 1.5 Hz. 1 H), 6.13 (qd. Jd = 15.5 Hz, Jq = 7.6 Hz. 1 H). 1.87 (dd. 

Jd = 7.6 Hz. J d = 1.7 Hz, 3 H), 0.93 (t, J = 7.6 Hz, 3 H); 

o-propylstyrene (20): ^H NMR 5 (aryl protons of 19 and 20 overlap) 

7.34 (dd, Jd = 17.0 Hz, Jd = 11.0 Hz, 1 H), 5.57 (dd. Jd = 17.0 Hz. Jd 

= 1.5 Hz. 1 H). 5.26 (dd, Jd = 11.0 Hz. J d = 1.5 Hz. 1 H). 2.66 (t. J = 

7.7 Hz. 2 H). 1.58 (m. 2 H). 0.93 (t. J = 7.3 Hz, 3 H): [lit.26 ly NMR 

(CDCI3) 5 7.2 (m, 4 H), 7.06 (dd, Jd = 17 Hz, J d = 12 Hz, 1 H), 5.66 (d, 

J = 17 Hz, 1 H). 5.30 (d, J = 12 Hz. 1 H), 2.67 (t, 2 H), 1.60 (m. 2 H). 

1.14 (t. J = 8 Hz. 3 H)]; 

o-Allylcumene (21). o-Allylcumene (21) was formed in 31% 

yield by the addition of allyl bromide to o-cumylmagnesium bromide 

in a method patterned after Hurd's procedure:22 1h NMR (CD2CI2) 5 

7.31-7.24 (m. 1 H). 7.22-7.15 (m. 1 H). 7.13-7.07 (m. 2 H), 6.00 (ddt, 

J= 16.9, 10.3, 6.2 Hz. 1 H). 5.03-4.90 (m. 2 H), 3.43 (dt. J= 5.5, 1.5 

Hz. 2 H). 3.19 (septet. J = 6.9 Hz, 1 H), 1.20 (s, J = 7.1 Hz. 6 H); 13c 

NMR (75.5 MHz, CD2CI2) 5 147.4, 138.3, 137.1, 130.0, 127.0, 126.0, 

125.6, 115.5, 37.1, 29.1, 24.0; Anal. Calcd for C12H16: C, 89.94; H, 

10.06: IR (thin film) v 3066. 3018, 2962, 2926, 2867, 1636, 1600. 

1488. 1449, 1430, 1033, 993, 913 cm"!; HRMS m/z for C12H16 (M+) 

calcd. 160.12520, found 160.12530. Anal. Calcd for C12H16: C, 

89.94; H, 10.06. Found: C, 89.10; H, 9.80. 

o-(3-Butenyl)toluene (23).3 o-(3-Butenyl)toluene (23) was pre­

pared in 64% yield by the addition of allylmagnesium bromide to 
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a-chloro-o-xylene: Ir NMR (CDCI3) 6 7.17-7.07 (m, 4 H). 5.84 (qt. Jq = 

10.2 Hz. Jt = 6.6 Hz. 1 H). 5.04 (dq. Jd = 17.1 Hz, Jq = 1.5 Hz. 1 H). 

4.98 (ddt. Jd = 10.2 Hz. Jd = 1.8 Hz. Jt = 12 Hz. 1 H). 2.73-2.65 (m. 

2 H). 2.37-2.27 (m. J = 7 Hz, 2 H). 2.31 (s, 3 H); [lit.28 Ir NMR 

(CDCI3) 5 7.08 (4 H, broad), 6.2-4.8 (4 H. broad). 2.25 (3 H. s)]: GCMS 

(70 eV) m/e (% base peak) 146 (15.4). 105 (100). 91 (3.1). 77 (10.9) 

[lit.26 146. 105 (base peak). 91]. 

o-(4-Pentenyl)toluene (24).3 Preparation was based on the 

procedure reported by Nishimura and co-workers.29 Reaction of 

o-tolylmagnesium bromide and 5-bromo-1 -pentene afforded o-(4-pen-

tenyl)toluene in 40 % yield: ^H NMR (CDCI3) Ô 7.15-7.05 (m, 4 H). 

5.85 (qt. Jq = 10.2 Hz. J t = 6.7 Hz, 1 H). 5.04 (dq. Jd = 17.1 Hz. Jq = 

1.7 Hz, 1 H), 4.98 (ddt, Jd = 10.2 Hz. Jd = 2.2 Hz, Jt = 1.2 Hz, 1 H), 

2.64-2.55 (m, 2 H), 2.30 (s, 3 H), 2.19-2.11 (m, 2 H). 1.71-1.65 (m. 2 

H) Ilit.30 1H NMR (CDCI3) 6 7.08 (4 H). 5.88 (1 H), 5.05 (2 H), 2.60 (2 

H), 2.28 (3 H), 2.6-1.3 (4 H)]; GCMS (70 eV) m/e (% base peak) 160 

(16.4). 118 (78.4). 106 (33.8), 105 (100), 91 (40.7). 77 (26.7). 

Flash vacuum pyrolysis. Flash vacuum pyrolysis (FVP) was 

performed as described by Malandra. 1 

Product analysis. FVP reaction mixtures were analyzed by 

capillary gas chromatography on Hewlett-Packard HP5840A and 

HP5890 gas chromatographs equipped with a 30-m (0.25-|im film 

thickness) DB-1701 capillary column and a flame ionization detector. 

The temperature program on the HP5840A was set at 80 °C for 10 

min. followed by heating at 3 °C min'l to a final temperature of 250 
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°C. The temperature program on the HP5890 was set at 70 °C for 10 

min, followed by heating at 3 °C min'l to a final temperature of 250 

°C. 

GC analysis was performed by injecting 1 jiL of the py-

rolysate/biphenyl solution. Triplicate pyrolyses were performed, with 

the exception of FVP of 21 at 700 °C, for which duplicate analysis was 

performed. Peaks not appearing in all GC traces for a series of pyroly-

sis runs were discarded. For most major compounds, FID response fac­

tors were calculated (1-7, 10, 13, 28-30, toluene, ethylbenzene, m/p-

xylenes, 1-methylnaphthalene, and 2-methylnaphthalene). Other com­

pounds were assigned a response factor equal to biphenyl. Except 

where noted, percentages are for moles of product relative to total 

moles of starting material. Identification of products was based on GC 

retention time of authentic samples or those samples whose identity 

could be clearly established by NMR or GCMS. GCMS was used to de­

termine the molecular weights of minor products where possible. 
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Figure A 1. NMR spectrum (300 MHz, CDCI3) of the pyrolysis mixture from the FVP 
at 800 °C of o-allyltoluene (6) (S: chloroform. W: H2O). 
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1h NMR spectrum (300 MHz, CD2CI2) of o-methallyltoluene (10) (S: 
CHDCI2. W: H2O. T: tetramethylsllane, H: high-boiling residue from 
hexanes. X: unidentified impurity). 
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Figure A-2B. 13c NMR spectrum (75.5 MHz, CD2CI2) of o-methallyltoluene (10) (S: 
CD2CI2. T: tetramethylsilane). 
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Figure A 3. NMR spectrum (300 MHz. acetone-de) of the pyrolysis mixture from the 
FVP at 850 °C of o-methallyltoluene (10) (S: acetone-ds, W: H2O). 
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Figure A-4A. NMR spectrum (300 MHz. acetone-de) of o-allylethylbenzene (17) (S: 
acetone-d5, W: H2O, X: unidentified impurity). 
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Figure A-4B. NMR spectrum (75.5 MHz, CD2CI2) of o-allylethylbenzene (17)  (S: 
CD2CI2, T: tetramethylsilane). 
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Figure A S. NMR spectrum (300 MHz. acetone-de) of the pyrolysis mixture from the 
FVP at 750 °C of o-allylethylbenzene (17) (S: acetone-ds). 
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Figure A 6. NMR spectrum (300 MHz, acetone-de) of the pyrolysis mixture from the 
FVP of o-allylethylbenzene (17) at 800 °C (S: acetone-dg. W: H2O). 



www.manaraa.com

LA. A 
8 . P  7 . 8  7 . 6  7 . 4  7 . 2  7 . 0  6 . 8  6 . 6  6 . 4  

•  I  '  •  •  I  '  
6 . 2  6 . 0  5 . 0  5 . 6  5 . 4  S . 2  5 . 0  

-T-J-, -

4 . 0  4 . 6  4 . 4  4  . 2  4 . 0  

-i-p 

3 . 8  

00 

Figure A 7. 

|-rn-r-|-r-T-, j ,-r-r-y-r-r-r-pr-i-r-^ t-r-i-p-j T-r--]-t t-r-^ ti t-j-r-r—i-j t-i-r-j~i i • | i . ; t i j i r-i j 
.6 3 . 4  3 . 2  3 . 0  2 . 6  2 . 6  2 . 4  2 . 2  2 . 0  1 . 8  1 . 6  1 . 4  1 . 2  1 . 0  0. 8  0.6 0. 4  0.2 0.0 fnt-t 

1h NMR spectrum (300 MHz. acetone-de) of l-(o-propylphenyl)ethanol (S: 
acetone-ds, W: HgO). 
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Figure A-8. NMR spectrum (300 MHz, acetone-dg) of l-(o-propylphenyl)ethyl acr ate 
(S: acetone-d5. W: HgO, H: high-boiling residue from hexanes. E; ethyl 
acetate). 
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Figure A 9. Ir NMR spectrum (300 MHz, acetone-de) of the pyrolysis mixture from the 
FVP of l-(o-propylphenyl)ethyl acetate, showing E-2-(l-propenyl)-toluene 
(19), and o-propylstyrene (20) (19: Compound 19, 20: Compound 20, S: 
acetone-ds, W: H2O). 
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Figure A-1 OA. NMR spectrum (300 MHz, CD2CI2) of o-allylcumene (21) (S: CHDCI2. 
W: H2O, H: high-boiling residue from hexanes, X: unidentified impurity). 
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Figure A ll. 1h NMR spectrum (300 MHz, acetone-de) of the pyrolysis mixture from the 
FVP at 700 °C of o-allylcumene (21) (S: acetone-ds W: H2O). 
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Figure A-12. NMR spectrum (300 MHz, acetone-d6) of the pyrolysis mixture from the 
FVP at 750 °C of o-allylcumene (21) (S: acetone-dg W: H2O). 
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Figure A-13. NMR spectrum (300 MHz, CDCI3) of the pyrolysis mixture from the FVP 
at 800 °C of o-(4-pentenyl)toluene (24) (S: chloroform, W: H2O). 
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APPENDIX 2 

SUPPLEMENTARY DATA TABLES 

Table A-I. Products and recovered starting material, total recov­
ery of material, and conversion from the FVP of o-allyl-
toluene (6) at various temperatures b 

yield, % c 

entry RT d 700 °C 800 °C 900 °C 

toluene 0.57 — 1.05 3.03 

ethylbenzene — — 0.55 1.92 

m/p-xylene — — 0.51 0.18 

o-xylene (28) — — 0.23 1.92 

styrene (3) — — 0.75 3.45 

benzocyclobutene (2) — — 0.35 1.19 

allylbenzene — — — 0.26 

propylbenzene — — — 0.12 

o-ethyltoluene (29) — — 1.46 0.94 

AA-118 [CgHio] — — — 0.09 

o-methylstyrene (30) — 1.02 3.18 5.52 

AB-118 (CgHiol — — — 0.29 

benzaldehyde — — — 0.17 

indan — — — 0.68 

trans-J5-methylstyrene — — — 0.11 

m/p-allyltoluene 1.94 1.97 1.76 0.79 

o-allyltoluene (6) 96.47 90.94 45.35 6.56 

Table A-I continues on next page 
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Table A-I. Continued 

yield, % c 

entry rt d 700 °C 800 °C 900 °C 

indene (7) — 0.83 6.86 31.98 

2-methylindan (8) — 4.09 25.34 14.08 

1-methylindan — — 1.43 0.60 

TD-130 [CioHiol — — 0.14 0.92 

TE-130 ICioHiol — — — 0.11 

o-methylbenzaldehyde — — 0.28 0.15 

o-(l-propenyl)toluene (11) — — 3.05 3.68 

TH-130 [CioHiol — — — 0.18 

3-methylindene (16) — — 0.72 3.47 

tetralin (1) — 0.32 2.74 3.28 

2-methylindene (15) — — 0.42 0.73 

TK-130 [CioHiol — — 1.20 2.43 

1,2-dihydronaphthalene (4) — 0.55 1.42 1.10 

TL-128 [CioHsl 0.40 — — 0.98 

naphthalene (5) 0.39 — 0.96 8.10 

TN — — — 
e 

TO-148 [CnHiel — — — 0.10 

2-methylnapthalene — — — 0.17 

1 -methylnapthalene — — — 0.24 

2,2 ' -dimethylbiphenyl 0.24 0.27 0.25 0.39 

AC-182 IC14H14] — — — 0.10 

Table A-I continues on next page 
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Table A I. Continued 

yield. % ^ 

entry RT d 700 °C 800 °C 900 °C 

recovery / 

conversion 9 

94.62 

d 

83.28 

9.06 

88.78 

54.65 

72.79 

93.44 

FVP conditions: system pressure = 0.10 torr, sample 
temperature = 0 °C. ^ Amounts determined by GC with a known 
quantity of biphenyl added as standard. Data represent the average 
of triplicate runs. Products identified by comparison with authentic 
samples by retention time and GCMS are indicated by name. 
Products that were identified by GCMS only are indicated by code: 
XY-nnn, where 'X' corresponds to the system where first observed (t 
= 1. a = 6. m = 10, e = 17. c = 21. b = 23. p = 24. Y' to the 
individual unknown product (A, B. C. etc.). and 'nnn' to the nominal 
mass, c Moles of product divided by total moles of recovered 
material. ^ Starting material purity assay. ^ Unidentified product 
which constitutes <0.25% total area by GC. S Total moles of recovered 
material divided by moles of starting material used. 9 Total moles of 
recovered material minus moles of recovered starting material 
divided by total moles of recovered material. 
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Table A-H. Products and recovered starting material, total recov­
ery of material, and conversion from the FVP of 
o-methallyltoluene (10) at various temperatures 

yield, % ^ 

entry RT d 700°C 800 °C 850 °C (Û
 

0
 

0
 0 0
 

toluene 3.28 0.27 0.68 1.93 3.73 

ethylbenzene 0.01 — 1.03 2.53 3.18 

m/p-xylene — — 0.75 0.15 — 

o-xylene (28) — 0.41 1.71 4.26 

styrene (3) — — 1.10 4.96 

benzocyclobutene (2) 0.03 0.13 0.80 1.13 1.43 

propylbenzene 0.07 — — 0.21 — 

o-ethyltoluene (29) — 0.27 4.24 4.49 2.73 

o-methylstyrene (30) — 0.29 0.92 1.45 1.82 

methallylbenzene 0.03 — 0.41 0.28 — 

MA — — e — — 

1 -methylpropenylbenzene 0.23 0.12 0.67 0.64 — 

indene (7) — — 2.71 5.92 16.64 

MB — — e e 

MC — — — 
e 

2,2-dimethylindan (13) — 4.03 31.71 24.08 9.76 

MD-130 [CioHiol — — 1.02 1.17 1.49 

ME-146 [C11H14] 0.24 1.08 0.35 0.62 — 

MF — 
e 

— — — 

o-methallyltoluene (10) 94.54 89.57 30.15 22.22 6.21 

MG — 
e — — — 

Table A-II continues on next page 
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Table A-n. Continued 

yield, % c 

entry RT d 700 °C 800 °C 850 °C 900 °C 

l-(o-tolyl)-2-methylpropene 
(14) 

— 0.70 5.99 6.58 4.68 

MH — e e e — 

3-methylindene (16) — 0.18 3.28 4.50 5.23 

MI-130 [CioHiol — — 0.34 0.77 1.10 

MJ — — e e — 

MK-130 [CloHiol — — — 0.76 3.68 

2-methyllndene (15) — 0.42 3.47 4.35 4.00 

ML-128 [CsHiol — 0.16 0.63 0.69 2.12 

MM-146- [C11H14] 1.40 0.26 1.02 1.22 — 

benzofulvene (38) — 1.30 1.08 — 

naphthalene (5) — 0.08 4.12 6.56 18.80 

MN-144 [C11H12] — 0.20 — — — 

MO — e — — 

MP-144 [C11H12] — 0.50 0.29 0.23 — 

M9-144 [C11H12I — 0.34 0.36 0.39 — 

MR-144 [C11H12I — 0.26 0.25 — — 

MS-144 [C11H12] — — — 0.17 — 

2-methylnaphthalene — — 0.94 1.13 1.61 

1 -methylnaphthalene — 0.23 0.35 0.47 0.86 

2,2'-dimethylbiphenyl 0.16 0.93 1.79 1.42 1.72 

Table A-IÎ continues on next page 
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Table A-n. Continued 

yield, % c 

entry RT d 700 °C 800 °C 00
 

Ol
 

o
 o o
 

900 °C 

recovery / 100.00 89.00 83.81 80.97 67.31 

conversion 9 d 10.43 69.85 77.78 93.78 

<^FVP conditions: system pressure = 0.10 torr, sample temper­
ature = 0 °C. b See Table A-I, note b. c Moles of product divided by to­
tal moles of recovered material. ^ Starting material purity assay. 
^ Unidentified product which constitutes <0.43% total area by GC. 
/Total moles of recovered material divided by moles of starting ma­
terial used. 9 Total moles of recovered material minus moles of re­
covered starting material divided by total moles of recovered mate­
rial. 
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Table A-in. Products and recovered starting material, total re­
covery of material, and conversion from the FVP of 
2.2-dimethylindan (13) at 900 °C 

entry yield. 

toluene 3.12 

DA e 

DB / 

DC e 

ethylbenzene 4.08 

o-xylene (28) 0.90 

benzocyclobutene (2) 0.26 

propylbenzene 1.39 

o-ethyltoluene (29) 1.22 

o-methylstyrene (30) 0.17 

DD e 

DE e 

indene (7) 21.67 

DF e 

DG e 

2.2-dimethylindan (13) 10.67 

DH f 

o-methallyltoluene (10) 4.78 

1 -(o-tolyl)-2-methylpropene (14) 5.01 

3-methylindene (16) 7.41 

MI-130 ICIOHIO] 1.93 

MJ-130 [CI OH 10] 1.55 

Table A-in continues on next page 
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Table A-III. Continued 

entry yield.%c 

2-methylindene (15) 5.38 

benzofulvene (38) 3.11 

naphthalene (5) 24.01 

DI-144 [C11H12] 0.21 

MP-144 [C11H12] 0.14 

MS-144 IC11H12] 0.13 

2-methylnaphthalene 1.81 

1-methylnaphthalene 0.98 

2.2'-dimethylbiphenyl 0.08 

DJ e 

DK e 

recovery 9 60.35 

conversion ^ 88.33 

See Table A-I, note a. ̂  See Table A-I, note fa. c See Table A-I, 
note c. ^ Assay of starting material in relative area percent: 
(2,2-dimethylindan (97.2), unidentified impurities, none of which are 
detected in the product mixtures (2.8) ^ Unidentified product which 
constitutes <0.35% total area by GC. /Unidentified product which 
constitutes <1.82% total area by GC. 9 See Table A-I. note /. ^ See 
Table A-I, note g. 
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Table A-IV. Products and recovered starting material, total re­
covery of material, and conversion from the FVP of 
o-allylethylbenzene (17) at various temperatures 

entry 

yield, % c 

entry RT d 700 °C 750 °C 800 °C 

ethylbenzene 0.84 0.78 1.31 2.02 

o-xylene (29) — — — 0.70 

styrene (3) — 0.60 1.73 3.64 

allylbenzene — 0.28 0.52 0.42 

o-ethylstyrene (30) — 2.62 5.24 5.47 

EA — — e 

indene (7) — 1.90 6.91 22.84 

2-methylindan (8) — 4.16 6.21 4.02 

MD-130 [CioHiol — 0.37 0.78 0.34 

EB-146 [C11H14I — 1.14 0.33 1.03 

o-bromoethylbenzene 0.35 0.44 0.98 0.70 

o-allylethylbenzene (17) 95.84 74.17 48.49 14.62 

EC-146 [C11H14] — 0.21 0.29 — 

ED-146 IC11H14I — 3.91 3.58 2.56 

EE-146 [C11H14] — 0.66 — — 

3-methylindene (16) — 1.83 4.70 6.72 

EF-146 IC11H14I — — — 0.58 

o-propylstyrene (20) — — 1.70 3.55 

2-methylindene (15) — 1.76 4.56 6.37 

ML-128 [C10H8] — — 0.27 — 

E-(o-propenyl)ethylbenzene (19) — 1.36 2.22 2.10 

Table A-IV continues on next page 
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Table AIV. Continued 

entry 

yield, % c 

entry RT d 700 °C 800 °C 900 °C 

EG — — e 
— 

EH 0.47 — — — 

naphthalene (5) — 1.57 5.72 19.28 

EI-146 lCiiHi4l — 1.43 2.01 1.01 

EJ-144 [C11H12] — 0.37 0.19 — 

MP-144 [C11H12] — — 0.25 

EK 1.33 

MQ-144 [C11H12] — — 0.23 

EL-144 [C11H12I — — 0.76 0.59 

2-methylnaphthalene 0.39 0.62 

1 -methylnaphthalene 0.60 0.81 

2,2'-diethylbiphenyl 1.17 0.31 — — 

recovery / 100.00 78.45 78.67 70.68 

conversion 9 41.81 61.85 89.67 

^ See Table A-I, note a. ^ See Table A-I, note b. c See Table A-I, 
note c. ^ Assay of starting material. Percentages given are of relative 
area by GC. ^ Unidentified product which constitutes <0.22% total 
area by GC. f See Table A-I. note f. 9 See Table A-I, note g. 
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Table A-V. Products and recovered starting material, total re­
covery of material, and conversion from the FVP of 
o-allylcumene (21) at various temperatures 

yield. % c 

entry RT d 700 °C e 750 °C 

ethylbenzene — — 0.96 

o-xylene (28) — — 0.75 

styrene (3) — 0.67 2.36 

cumene 0.74 1.21 1.11 

allylbenzene — 0.41 0.57 

o-ethyltoluene (29) — 2.21 3.29 

o-ethylstyrene (30) — 2.81 3.67 

indene (7) — 1.74 6.60 

CA-146 IC11H14] — 2.79 3.41 

MD-130 [CIOHIO] — 0.66 1.45 

CB-146 [C11H14] — 1.19 1.18 

CC-160 [C12H161 — 4.35 3.37 

CD — J — 

3-methylindene (16) — 3.56 8.19 

CE-146 [C11H14] — 1.02 0.81 

o-allylcumene (21) 91.84 53.51 19.88 

CF-160 [C12H16] 0.52 0.68 2.58 

CG-160 [C12H16] — 2.50 5.10 

CH-160 IC12H16] — 2.28 — 

CI-144 [C11H12] 0.15 0.68 0.72 

ML-128 [CsHiol — 1.95 3.09 

Table A-V continues on next page 
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Table A-V. Continued 

yield, % ^ 

entry RT d 700 °C 750 °C 

CJ 0.59 — — 

CK-146 [C11H14] — 0.52 0.55 

naphthalene (5) — 5.10 17.69 

CL-144 [C11H12] — 0.98 1.07 

CM-160 [C12H16] — 2.10 1.35 

CN-160 [C12H16] 0.39 0.83 0.54 

CO 0.13 — — 

MP-144 [C11H12] — 0.47 0.61 

CP 1.79 — — 

EL-144 [C11H12] — 2.15 2.63 

MS-144 [C11H12 — 0.34 — 

CQ — / — 

CR 0.48 — — 

CS 0.20 — — 

2-methylnaphthalene — 2.17 3.78 

1 -methylnaphthalene — 1.12 2.69 

2,2'-diisopropylbiphenyl 3.18 — —— 

recovery 9 100.00 83.43 73.22 

conversion ^ d 46.49 80.04 

^ See Table A-I, note a. ^ See Table A-I, note b. c See Table A-I, 
note c. d Assay of starting material. Percentages are of relative area 
by GC. G Duplicate runs performed, rather than triplicate runs. / 
Unidentified product which constitutes <0.52% total area by GC. 
9 See Table A-I. note f. ^ See Table A-I, note g. 
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Table A-VI. Products and recovered starting material, total re­
covery of material, and conversion from the FVP of 
o-(3-butenyl)toluene (23) at various tempera­
tures 

yield, % ^ 

entry RT d 700 °C 800 °C 900 °C 

toluene 

ethylbenzene 

m/p-xylene 

o-xylene (28) 

styrene (3) 

benzocyclobutene (2) 

allylbenzene 

propylbenzene 

o-ethyltoluene (29) 

o-methyls1yrene (30) 

indan 

m/p-allyltoluene 

o-allyltoluene (6) 

BA 

indene (7) 

2-methylindan (8) 

o-methylbenzaldehyde 

o-( 1 -propenyDtoluene (11) 

BB-146 (C11H14] 

BC-146 [C11H14] 

— — 2.29 

— — 1.59 

— — 0.75 

0.40 4.70 18.58 

— 0.46 6.80 

0.36 3.51 15.24 

— — 0.23 

— — 0.32 

— 2.97 10.37 

— 0.51 2.14 

— — 0.13 

— 0.95 3.83 

— 0.21 0.40 

e _ 

— 0.34 1.64 

— — 0.22 

0.33 0.39 0.21 

— — 0.15 

— 0.16 0.43 

— 0.16 0.22 

Table A-VI continues on next page 
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Table A-VI. Continued 

entry 

yield, % ^ 

entry RT d 700 °C 800 °C 900 °C 

o-(3-butenyl) toluene (23) 100.0 64.20 41.73 15.87 

BD-146 [C11H14] 0.32 0.25 0.12 

2-methylindene (15) — — 0.23 0.10 

TK-130 [CioHiol — — — 0.14 

1,2-dihydronaphthalene (4) — — 0.30 0.30 

TM — — e e 

naphthalene (5) — — 0.45 1.38 

BE-146 [C11H14] — — 0.20 0.12 

BF-156 [C12H12] — — — 0.20 

2-methylnapthalene — — — 0.10 

1 -methylnapthalene — — — 0.18 

BG-182 [C14H14] — — — 0.46 

BH-182 [C14H14I — — — 0.47 

BI-196 [C15H16] — — — 0.29 

BJ-196 [C15H16] — — 2.15 4.24 

BK-210 IC16H18] — — 0.37 0.49 

l,2-di(o-tolyl)ethane (27) — 34.38 39.36 7.59 

BL-178 IC14H10] — — 0.63 1.46 

BM-208 [C16H16I — — 0.46 

BN-192 IC15H12] — — 0.47 

recovery / 102.4 97.77 88.72 110.0 

Table A-VI continues on next page 
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Table A-VI. Continued 

yield, % c 

entry RT d 700 °C 800 °C 900 °C 

conversion 9 d 35.80 58.27 84.13 

et FVP conditions: system pressure = 0.010 torr, sample 
temperature = 0 °C. ^ Amounts determined by GC with a known 
quantity of biphenyl added as standard. Data for 700 °C represent 
the average of duplicate runs. Data for 750 °C represent the average 
of triplicate runs. See Table A-I, note b for notation.^ See Table A-I, 
note c. ^ See Table A-I, note d. ^ See Table A-I, note e. f See Table A-I, 
note /. 9 See Table A-I, note g. 
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Table A-VI. Products and recovered starting material, total re­
covery of material, and conversion from the FVP of 
o-(4-pentenyl)toluene (24) at various tempera­
tures 

yield, % c 

entry RT 600 °C 700 °C 800 °C 

toluene 

ethylbenzene 

o-xylene (28) 

styrene (3) 

benzocyclobutene (2) 

o-ethyltoluene (29) 

o-methylstyrene (30) 

benzaldehyde 

indan 

m/p-allyltoluene 

o-allyltoluene (6) 

indene (7) 

o-methylbenzaldehyde 

PA 

PB-146 [C11H14] 

naphthalene (5) 

PC 

PD 

2-(4-pentenyl)toluene (24) 

PE-160 [C12H16I 

1.52 

0.31 

92.42 90.40 

0.26 

1.00 

0.92 

0.88 

30.62 

0.21  

0.26 

0.20 

0.34 

1.67 

e 

0.82 

0 . 1 1  

e 

e 

52.92 

0.58 

3.24 

1.32 

5.65 

2.54 

3.24 

3.15 

59.78 

1.33 

1.07 

0.51 

2.29 

2.56 

0.98 

0.52 

2.97 

0.52 

Table A-VII continues on next page 
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Table A-VII. Continued 

yield, % ^ 

entry RT d 600 °C 700 °C 800 °C 

PF — — 
e 

PG-160 IC12H16] — — 0.97 1.10 

2,2'-dimethylbiphenyI 7.58 7.77 8.23 7.22 

recovery ^ 97.85 96.20 86.59 70.36 

conversion / d 9.60 47.08 97.03 

^ See Table A-Il, note a. ̂  See Table A-I, note b. c See Table A-I, 
note c. d See Table A-I, note d. ® Unidentified product which 
constitutes ^0.35% total area by GC. f See Table A-I, note /. 9 See 
Table A-I, note g. 
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Table A-Vni. Products and recovered starting material from the 
solution-phase thermolysis of o-methallyltoluene 
(10) in phenyl ether (240 min, 400 °C) at various 
concentrations ^ 

yield. %c 

entry 0.0724 M 0.0145 M 

ethylbenzene 1.06 1.15 

styrene (3) 3.30 0.93 

o-methylstyrene (30) 1.45 1.30 

2,2-dimethylindan (13) 3.58 3.89 

o-methallyltoluene (10) c 14.03 49.97 

1 -(o-tolyl) -2-methylpropene (14) 57.73 26.67 

3-methylindene (16) 6.11 7.72 

2-methylindene (15) 4.50 2.20 

napthalene (5) 4.65 1.22 

MP-144 [C11H12] 0.56 0.72 

MQ-144 IC11H121 2.21 1.57 

1 -methylnapthalene 0.83 2.65 

Thermolysis conditions: 0.5 mL of phenyl ether solution is 
degassed and sealed in a glass tube, and then is heated to 400 °C for 
240 minutes, then allowed to cool to RT, ^ See Table A-I, note b. 
^ See Table A-II for starting material assay. 
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APPENDIX 3 

SUPPLEMENTARY CALCULATIONS AND GRAPHS 

Calculation of T50% was performed by plotting the % conversion 

for conversion of 23 and 24 vs. temperature (Figure A-14). Similar 

calculations gave the T5o% values for the conversions of 6, 10, 17. and 

21 (Figure A-15). The resulting T50% values are given, along with their 

calculated AH values, in Table A-IX. 

Schiess' method^O was used to attempt to estimate AG$ values 

for the conversions of 23 and 24 in order to construct a calibration 

curve. Literature values for activation parameters were obtained from 

model systems. The homolytic cleavage of biallyl at 700 °c21 was the 

model for 23 The activation parameters are Ea = 54.5 kcal mol"! and 

log A = 13.4. The model system for 24 was the retro-ene reaction of 

I,6-heptadiene at 700 °C, with Ea = 46.9 kcal mol'l and log A = 

II.3.22 The ASt values for 23 and 24 were assumed to be the same as 

their respective model systems. In addition, we assumed that 

differences in AHf values used in corrections were the same as the 

differences in the AH*. 

The AH for conversion of prop ene to an allyl radical is 3 kcal 

mol'l greater than AH for conversion of o-jq^lene to the 2-methylbenzyl 

radical. This results in a calculated AHt of 52 kcal mol' 1, and a AGt of 

53 kcal mol'l at its T50%. Similarly, 0.4 kcal mol'l was subtracted 

from the calculated AHt for conversion of 1,6-hexadiene in order to 
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give an approximate AHt value for conversion of 24. AG^ is then 

calculated to be approximately 57 kcal mol"l at its T50% 

The values of T50% for 23 and 24 were plotted against their re­

spective AG^ values to make a calibration curve. The slope of the line 

was negative, rather than the expected positive slope. This is probably 

the result of two main causes: the crude nature of the approximations 

of AH^ in these reactions, along with the fact that the temperature in 

the pyrolysis oven is not constant throughout its length, and the 

thermocouple only measures the temperature in the middle of the 

oven. 

However, if one considers the T5o% values for all of these 

compounds, it is apparent that all of the compounds have similar 

T50% values, and should therefore have reasonably similar AG^ values. 

The decrease in T50% values in 6, 10, 17, and 21 as substitution at 

the radical sites increases is reasonable. A decrease in AG^ with 

increasing substitution is expected. However, it is possible that the 

values for conversion of 17 and 21 reflect a-fragmentation reactions 

rather than hydrogen transfer to give diradicals. 
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Table A-IX. Estimated AH values for diradical formation from 
o-allyltoluene (6), o-methallyltoluene (10), o-allyl-
ethylbenzene (17), and o-allylcumene (21) and 
T50% values for the conversion of 6, 10, 17, 21, 
o-(3-butenyl)toluene (23), and o-(4-pentenyl)tolu-
ene (24) 

entry 

Calculated*^ AH, 
kcal mol'l 

T50%.°C 

o-allyltoluene (6) 45.0 794 

o-methallyltoluene (10) 44.0 783 b 

o-allylethylbenzene (17) 41.5 720 

o-allylcumene (21) 37.9 705 c 

o-(3-butenyl)toluene (23) — 761 

o- (4-pentenyl) toluene (24) — " 697 

^ See réf. 19. ^ Pyrolysis of 10 was carried out at 4 tem­
peratures, c Pyrolysis of 21 was carried out at only 2 tem­
peratures. 
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Figure A-14. Plot of temperature vs .  conversion for the FVP of 

o-(3-butenyl)toluene (23) and o-(4-pentenyl)toluene 

(24). 
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Figure A-15. Plot of temperature vs .  conversion for the FVP of o-al-

lyltoluene (10), o-methallyltoluene (10), o-allylethyl-

benzene (17), and o-allylcumene (21). 
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PAPER 3. COUPLING OF DIRADICALS GENERATED BY 

INTRAMOLECULAR HYDROGEN-ATOM TRANSFERS: 

CYCLIZATION REACTIONS OF ARYL STYRENE DERIVATIVES 
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INTRODUCTION 

We recently reported findings concerning a novel thermally-in-

duced hydrocarbon cyclization reaction. 1 Flash vacuum pyrolysis 

(FVP) of o-methallyl toluene (1) at 700-900 °C gives moderate yields of 

2.2-dlmethylindan (2) along with small amounts of o-(2-methyl-

propenyl)toluene (3). We postulate that an intramolecular hydrogen-

atom transfer occurs to give a diradical intermediate (4) which then 

undergoes coupling to give 2 or intramolecular disproportionation to 

give either 1 or 3 as shown in Scheme I. 

Scheme I 

OCT-OCT 
1 4 

3 

To date, the only examples of formations of diradicals or a pair 

of radicals by transfer of a hydrogen atom 

RH R'H ^ R" -R'Ho 
i J : J 

have been intramolecular photochemical^ reactions and a few inter-

molecular thermal reactions.3.4,5 There is only one other report 
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which presents evidence for the formation of a diradical by thermal­

ly-induced transfer of a hydrogen atom and this is for the cyclization of 

an organosilicon compound.6 

As part of our previous study, we investigated the FVP behavior 

of other derivatives including o-allylethylbenzene (5) and o-allylc-

umene (6). We had believed that the relative stability of predicted 

diradical intermediates 7 and 8, respectively, would allow investigation 

5 6 7 8 

of the hydrogen atom transfer reaction at.lower temperatures. Unfor­

tunately. compounds 5 and 6, particularly 6, undergo competetive 

a-fragmentation to give a large number of products. We also observed 

that in solution, 1 largely isomerizes to 3; only a small amount of 2 is 

formed, and then only at high temperatures. 

In this chapter, we report the results of the study of the products 

of the FVP of 2-methyl-2'-vinylbiphenyl (9), which was expected to be 

more resistant to fragmentation reactions than 5 or 6. The results from 

the FVP of 9 could be explained by other mechanisms besides hydro­

gen transfer/diradical coupling. Therefore we investigated the pyroly-

sis of 2-(o-methylbenzyl)styrene (10), which contains a methylene 

bridge between the aryl rings to act as an 'insulator* to eliminate some 

alternative mechanisms. 



www.manaraa.com

I l l  

9 10 



www.manaraa.com

1 1 2  

RESULTS 

A summary of the product study of the FVP of 2-methyl-2'-vinyl-

biphenyl (9) at 0.10 torr (600-800 °C) is presented in Table I. At 600 

°C, small amounts of 9-methyl-9,10-dihydrophenanthrene (11). BM-

194 (See Table I, note b for an explanation of nomenclature), and 

phenanthrene (12) are formed. At 700 °C, the amounts of 11 and 

BM-194 have increased. Phenanthrene is now a significant component 

of the mixture, and a small amount of 9-methylphenanthrene (13) is 

detected. At 800 °C, no starting material can be detected, and the 

major product is 12. The amount of 11 is much lower, and the 

amounts of BM-194 and 13 are slightly higher. Fluorene (14), a 

significant product at 800 °C, is probably formed by secondary 

pyrolysis of primary products. 

A summary of the product study of the FVP of 2-(o-methylben-

zyl)styrene (10) at 0.10 torr (600-800 °C) is presented in Table II. At 

600 °C, the most abundant products are compound SN-208 (See Table 

11 12 

13 14 
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I, note b for an explanation of nomenclature) and anthracene (15), and 

ST-208 are also produced in low yields. At 700 °C, 15 makes up over 

45 % of the product mixture, and 1-Methylanthracene (16) is pro­

duced in ca. 7.2 % yield. 

At 700 °C, the yield of SN-208 drops substantially, and the yields 

of ST-208 and SEE-208 increase slightly. Two other products, SK-208 

and SNN-206, are formed in low yield. At 800 °C, starting material is 

almost completely consumed, and 15 makes up over 60 % of the prod­

uct mixture. 1-Methylanthracene accounts for nearly 12 % of the 

products, and compounds SN-208. ST-208, SK-208, and SNN-206 are 

formed in low yields (ca. 0.5-4.0%). 

15 16 
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Table I. Products and recovered starting material, total recovery of 
material, and conversion from the FVP of 
2-methyl-2'-vinylbiphenyl (9) at various temperatures 

yield, % ^ 

entry 600°C 700 °C 800 °C 

2-methyl-2'-vinylbiphenyl (9) ^ 93.0 44.0 — 

9-methyl-9,10-dihydrophenanthrene (11) 4.6 27.2 6.8 

BM-194 IC15H14I 1.4 9.8 10.3 

phenanthrene (12) 0.4 10.0 57.9 

9H-fluorene (14) 0.1 1.2 8.2 

9-methylphenanthrene (13) 3.0 3.9 

other products 0.5 e 7.8 e 16.8 e 

recovery f 85.8 69.5 50.2 

conversion 9 7.0 56.1 100.0 

FVP conditions: system pressure = 0.10 torr, sample tempera­
ture = 50-60 °C. b Amounts determined by GC with a known quantity 
of biphenyl added as standard. Data represent the average of triplicate 
runs. Products identified by comparison with authentic samples or by 
retention time and GCMS are indicated by name. Products identified 
by GCMS only are indicated by code: XY-nnn, where 'X' represents the 
experiment where first observed (B = 2-methyl-2'-vinylbiphenyl, S = 
2-(o-methylbenzyl)styrene, 'T the individual unknown product (A. B, C, 
etc.), and 'nnn' the nominal mass, c Moles of product divided by total 
moles of recovered material. ^ Starting material assay {GC, mole %): 
2-methyl-2'-vinylbiphenyl (99.2), unidentified compounds BB (0.3), BC 
(0.1) BG-180 with formula C14H12 (0.1), BQ (0.1), BS-192 with 
formula C15H12 (0.1), BE-194 with formula C15H14 and BO-194 with 
formula C15H14 (total of 0.1). ^ See Table A-I in the Appendix of Paper 

Table 1. continued on next page 
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Table I. Continued 

3, this dissertation, for a more detailed analysis. /Total moles of 
recovered material divided by moles of starting material used. 9 Total 
moles of recovered material minus moles of recovered starting ma­
terial divided by total moles of recovered material. 
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Table II. Products and recovered starting material, total recovery of 
material, and conversion from the FVP of 2-(o-methylben-
zyDstyrene (10) at various temperatures 

yield, % ^ 

entry 600°C 700 °C 800 °C 

2-(o-methylbenzyl)styrene (10) ^ 65.7 13.2 1.2 

SN-208 [C16H16] 12.1 5.1 0.6 

anthracene (15) 7.2 45.3 62.6 

ST-208 [C16H16] 1.1 6.6 4.4 

1-methylanthracene (16) — 7.2 11.8 

SK-208 IC16H16I — 4.3 3.2 

SNN-206 [C16H14], 2.6 1.6 

other products 14.0 e 15.7e 14.9 e 

recovery / 75.2 58.5 59.3 

conversion 9 34.3 86.8 98.8 

^ See Table A-I, note a. ̂  See Table I, note b. ̂  See Table I, note 
c. ^ Starting material (GC assay, relative area%): 2-(o-methylben-
zyl)styrene (93.5), 2-benzylethylbenzene (1.1), unidentified products 
SW-208 with formula C16H16 (1.6), SJ-206 with formula C16H14 
(1.4), SS-208 with formula C16H16 (1.3), SP-208 with formula 
C16H16 (0.7). SN-208 with formula C16H16 (0.4), SE-206 with 
formula C16H14 (0.2). ® See Table A-II in the Appendix of Paper 3, this 
dissertation, for a more detailed analysis. /See Table I, note /. 9 See 
Table I, note g. 
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DISCUSSION 

The products produced by the FVP of 2-methyl-2'-vlnylbiphenyl 

(9) are consistent with intramolecular hydrogen-atom transfer followed 

by coupling of the resulting diradical intermediate. Hydrogen-atom 

transfer from the methyl group of 9 would afford diradical intermedi­

ate 17. which upon coupling would give 9-methyl-9,10-dihy-

drophenanthrene (11). Subsequent loss of the methyl group and a 

p-hydrogen would give phenanthrene (12). The identity of 11 was es­

tablished by comparison to the reported ^H NMR spectrum of 11^ as 

well as by analysis of ^H NMR and GCMS data. In addition to 11 and 

12. 9-methyl-phenanthrene (13) is formed in ca. 3 % yield. ^H NMR 

and GCMS data are consistent with reported literature values^ for 13. 

12 

9 17 11 

13 
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There are a number of possible mechanisms for formation of 11 

from 9 in addition to the one described above. This mechanism does 

require generation of 17. a relatively high energy species, but both 

radical sites are resonance stabilized. The AHf for 17 is calculated^ to 

lie ca. ~35 kcal mol'l higher than 9. If the transition state lies only a 

few kcal mol'l above 17, it would still be accessible at ca. 700 °C. 

A second mechanism for the formation of 11 involves a 1,7 

sigmatropic hydrogen-atom shift 10 to give polyene 18, which then 

affords 11 by electrocyclic ring closure. 10 Movement of the hydrogen 

• • 
18 11 

is the same as in the first mechanism, but the intermediate in this 

mechanism is a polyene rather than a diradical. A significant 

drawback to this mechanism is that it requires disruption of both aro­

matic rings, resulting in a loss of ca. 40 kcal mol'l in resonance en­

ergy. 11 

If 18 is formed, twisting of the aryl rings would result in breaking 

the aiyl-aiyl 7c-bond to give 17. which could then couple rapidly. It is 

also possible that the actual mechanism involves a combination of both 

of these mechanisms. These possibilities are shown in Scheme II. 
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• • 

Scheme II 

H-atom 
transfer 

HgC-H 

sigmatropic 
H shift 

CH, 

• • 
coupling 

electrocyclic 
ring closure • • 

18 11 

Another possible mechanism involves electrocyclic ring closure 

of 9 to give 19, followed by a 1,5 methyl shift 10 to give 11. However, 

CH, • 
9 19 11 

this mechanism would require disruption of both aromatic rings in 

addition to severe steric interaction between the methyl group and the 

vinyl group. Further, if ring closure did occur, one would expect 

reaction to occur at the unsubstituted carbon, giving 20, which would 
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then give 4-methyl-9,10-dihydrophenanthrene (21). The presence of 

21 could not be established by analysis of the NMR12 and GCMS 

data. This mechanism is further discredited by the fact that pyrolysis 

conditions (700 °C) where 2-vinylbiphenyl (23) is produced do not re­

sult in formation of 9,10-dihydrophenanthrene (24) and/or 12.13 

There are a number of compounds formed which could not be 

identified, the most abundant of these being BM-194. Some of these 

intermediates could represent primary products which undergo sec­

ondary pyrolysis, possibly giving 11, 12, or fluorene (14). The increase 

in production of BM-194 at higher temperatures suggests that it is re­

sistant to secondary pyrolysis. A possible structure for BM-194 is 

dibenzosuberane 25, but no there is convincing spectroscopic evidence 

for its identity. 

We decided that incorporation of a methylene group between the 

aromatic rings would act as an "insulator" and eliminate the 1,7 sigma-

tropic shift, allowing us to obtain clearer support for the hydro­

gen-atom transfer mechanism. 2-(o-methylbenzyl)styrene (10) was 

9 20 21 

25 
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pyrolyzed, in anticipation of formation of 1-methyldibenzosuberane 26 

and dibenzosuberene (27). Instead, we obtained anthracene (15) in 

good yields, accompanied by small amounts of 1 -methylanthracene 

(16). Examination of Ir NMR and GCMS data provided no clear evi-

10 26 27 

15 16 

dence for the formation of 26. Comparison with an authentic sample 

clearly showed that 27, the predicted product of the secondary 

pyrolysis of 26, is not formed. In other systems we have examined, 1 

the loss of methyl groups from primary products is observed: therefore 

the failure to detect 27 argues against the formation of 26. 

It is uncertain how 15 and 16 are formed, but a reasonable 

mechanism involves a 1,5 sigmatropic hydrogen shift to afford 

o-quinodimethane (o-QDM) derivative 28. Isomerization of the double 

bonds would give o-QDM 29, which would be followed by electrocyclic 

ring closure to give 30 and/or 31.^4 Secondary pyrolysis of 30 and 31 
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would afford 15 and 16, respectively. The trends in the yields of 

SN-208, ST-208, or SEE-208 respect to temperature suggest that they 

undergo secondary pyrolysis and could be 30 or 31. 

Ar 

10 

: Me : H 

15 30 31 —— 16 

A possible drawback to this mechanism is that steric considerations 

would suggest more 31 would be formed, leading to 16, but it is 

possible that electronic effects favor formation of 30, leading to 15. 

A second possible mechanism for formation of 15 and 16 involves 

an ene reaction 10,15 to give compound 30 and 31 directly, followed 

by secondary pyrolysis to give 15 and 16 as described above. However, 

30 15 

31 —^ 16 

the required conformation for proper orbital overlap for the ene reac­

tion cannot be readily achieved due to the shortness of the chain 

length between the reacting centers. The effect of chain length in 

o-allylstyrene (32) on the ene reaction has been discussed by 
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Lambert. Compound 10 can be viewed as an analog of 32 and should 

therefore suffer similar restrictions on the ene reaction. 
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CONCLUSION 

Flash vacuum pyrolysis (FVP) of 2-methyl-2'-vinylbiphenyl (9) at 

0.10 torr (600-800 °C) results in a mixture of products that are consis­

tent with hydrogen-atom transfer from the methyl group in 9 to the 

double bond, followed by coupling of the resulting diradical intermedi­

ate. However, a sigmatropic hydrogen shift, followed by an electro-

cyclic ring closure could also explain the products that are observed. 

FVP of 2-(o-methylbenzyl)styrene (10) resulted in the formation 

of anthracene (15) and 1-methylanthracene (16). The route leading to 

formation of 15 and 16 is uncertain, but we believe a likely mechanism 

for formation of 15 and 16 involves a sequential 1,5 hydrogen shift, 

electrocyclic ring closure of the resulting o-quinodimethane intermedi­

ate, and subsequent secondary pyrolysis. We were unable to obtain 

any clear evidence for products resulting from hydrogen transfer/di-

radical coupling. 
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EXPERIMENTAL 

General Procedures 

Methods and materials. 

The pyrolysis apparatus has been described previously. 1 ̂  NMR 

spectra were obtained in dg-methylene chloride solution and chemical 

shifts are relative to tetramethylsilane. Spectral techniques and 

general preparatory procedures have been previously described. ̂  

2-iodobromobenzene. and 2-bromostyrene were purified by passing 

themthrough neutral alumina immediately prior to use. Other 

reagents were purchased as reagent grade and used as received. 

1-[2-(o-Methylphenyl)phenyl]ethanol. A modification of Hart's 

method was used. 18 Two equivalents of o-tolylmagnesium was allowed 

to react with 2-iodobromobenzene. Addition of acetaldehyde followed 

by workup and column chromatography on silica gel using 10% ethyl 

acetate in hexanes afforded l-[2-(o-Methylphenyl)phenyl]ethanol in 32 

% yield. 1-Phenylethanol was also present, but it did not affect the 

next step. 

2-methyl-2'-vinylbiphenyl (9). A modification of Hanzlik's pro­

cedure for the preparation of 4-vinylbiphenyl was used. 19 Dehydration 

of l-[2-(o-tolyl)phenyl]ethanol) with KHSO4 in DMSO and hydro-

quinone gave 2-methyl-2'-vinylbiphenyl (9) as a colorless oil in 73 % 

yield; NMR (CD2CI2) 6 7.68-7.65 (dd. Jd =7.5 Hz, Jd = 1.5 Hz., 1 

H). 7.37-7.17 (m. 5 H). 7.15-7.08 (m. 2H), 6.39 (dd, Jd = 17.6 Hz, Jd = 

11.0 Hz., 1 H), 5.66 (dd. Jd = 17.6 Hz, Jd = 1.2 Hz., 1 H), 5.09 (dd. Jd 
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= 11.0 Hz. Jd = 1.1 HZ..1 H), 2.03 (s. 3 H) [lit. 20 1h NMR ô 7.66 (dd, 

Jd = 7.3 Hz. Jd = 2.0 Hz.. 1 H). 7.40-7.08 (m. 7 H), 6.40 (dd, J= 17.5, 

11.0 Hz., 1 H), 5.66 (dd, J= 17.6, 1.2 Hz., 1 H), 5.08 (dd, J= 11.0. 1.2 

Hz., 1 H). 2.05 (s, 3 H)]; 13c NMR (CD2CI2) 6 140.56, 140.48, 136.11, 

135.63, 134.84, 129.66, 129.57, 129.52, 127.31, 127.21 (2 carbons). 

125.28. 124.48. 114.06, 19.58; GCMS (70 eV) m/e (% base peak) 194 

(41.8), 180 (14.5), 179 (100), 178 (48.9), 165 (10.8). 

2-(o-Methylbenzyl)styrene (10). a-Bromo-o-xylene was added 

to 2-styrylmagnesium bromide in a procedure patterned after that 

used for the preparation of o-(3-butenyl)toluene, ̂  Workup and 

chromatography gave 2-(o-methylbenzyl)styrene in 8% yield: ^H NMR 

(CD2CI2) 5 7.55 (dd, Jd = 7.4 Hz, Jd =1.6 Hz, 1 H), 7.28-7.02 (m, 5 H). 

6.98-6.76 (m, 3 H). 5.66 (dd. J= 17.3 Hz. Jd = 1.3 Hz.. 1 H). 5.25 (dd. 

Jd = 10.9 Hz, Jd =1.3 Hz, 1 H), 4.00 (s, 2 H), 2.27 (s, 3 H); 13c NMR 

(CD2CI2) 5 138.5, 137.3, 139.9, 136.3, 134.4, 129.8, 129.6, 128.9, 

127.7, 126.3, 126.0, 125.8, 125.5, 115.3, 36.1, 19.2; GCMS (70 eV) 

m/e (% base peak) 208 (29.7), 194 (15.1), 193 (100), 179 (15.5). 178 

(77.6). 165 (16.9). 115 (33.3). 91 (18.1). 89 (19.4); Anal. Calcd for 

C16H16: C. 92.26; H. 7.74. Found; C, 92.07; H, 7.53. 

Flash vacuum pyrolysis. Flash vacuum pyrolysis was per­

formed as previously described.21 

Product analysis. FVP mixtures were analyzed as previ­

ously described.21 FID response factors were calculated for 12 and 

15. Other compounds were assigned a response factor equal to 

biphenyl. 
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APPENDIX 1 

SPECTRA 
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Figure A-1. IR NMR spectrum (300 MHz. CD2CI2) of 2-methyl-2-vinylbiphenyl (9) (S; 
CHDCI2. W: H2O, T: tetramethylsilane. X: unidentified impurity). 
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Figure A-2. NMR spectrum (300 MHz. CD2CI2) of the pyrolysis mixture from the FVP 
at 700 °C of 2-methyl-2-vlnylbiphenyl (9) (S; CHDCI2. W; H2O). 
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Figure A-3A. NMR spectrum (300 MHz. CD2CI2) of 2-(o-methylbenzyl)styrene (10) (S: 
CHDCI2, W: H2O. T: tetramethylsilane. H: high-boiling residue from hexanes, 
X: unidentified impurity). 
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Figure A-3B. 13q nmR spectrum (75.5 Hz, CD2CI2) of o-I(2-methyl)phenylmethyl)styrene 
(10) (S: CD2CI2. T: tetramethylsilane). 
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Figure A-3C. NMR spectrum (75.5 Hz, CD2CI2)  of the downfield region of 
o-I(2-methyl)phenylmethyl)styrene (10). 
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Figure A-4. NMR spectrum (300 MHz. CD2CI2) of the pyrolysis mixture from the FVP 
at 700 °C of 2-(o-methylbenzyl)styrene (10) (S; CHDCI2. W; H2O). 
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APPENDIX 2 

SUPPLEMENTARY DATA TABLES 

Table A I. Products and recovered starting material, total recovery 
of material, and conversion from the FVP of 
o-2-methyl-2'-vinylbiphenyl (9) at various tempera­
tures 

entry RT d 

yield, % c 

600°C 700 °C 800 °C 

naphthalene — 0.12 — — 

BA-180 [C14H12I — — — 2.67 

2-methyl-2'-vinylbiphenyl (9) 99.37 92.95 43.99 

BB-194 IC15H14] 0.28 

9H-fluorene (14) — 0.08 1.22 8.21 

BC-208 [CieHiel 0.10 — — — 

BD-180 [C14H12] — 0.14 1.88 1.62 

BE-194 [C15H14] 0.03 0.08 0.94 1.60 

BF-196 [C15H161 — 0.06 0.28 — 

BG-180 [C14H12] 0.05 0.03 0.88 2.45 

BH-180 [C14H12] — — — 0.53 

9,10-dihydro-9-methylphenanthrene — 4.59 27.16 6.75 
(11) 

BJ-180 [C14H121 — — — 0.65 

BK-194 [C15H141 — — — 1.56 

BL-194 [C15H141 — 0.05 0.51 0.46 

Table A-I continues on next page 
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Table A-I. Continued 

yield, % ^ 

entry RT d 600 °C 700 °C 800 °C 

BM-194 [C15H14] — 1.38 9.75 10.28 

EN-194 IC15H14] — — — 0.39 

BO-194 [C15H12] 0.03 — 0.42 — 

phenanthrene (12) — 0.44 10.02 57.93 

BP-192 IC15H12] — — 0.60 

BQ-192 [C15H12I 0.14 0.09 0.35 

9-methylphenanthrene (13) — 2.96 3.92 

recovery f 85.76 69.54 50.21 

conversion 9 d 6.97 56.05 100.00 

Cl FVP conditions: system pressure = 0.10 torr, sample 
temperature = 50-60 °C. ^ Amounts determined by GC with a known 
quantity of biphenyl added as standard. Data represent the average 
of triplicate runs. Products identified by comparison with authentic 
samples or those that could be identified by retention time and 
GCMS are indicated by name. Products that were identified by 
GCMS only are indicated by code; XY-nnn, where 'X' corresponds to 
the system first observed (B = 2-methyl-2'-vinylbiphenyl, S = 
o-((2-methyl)phenylmethyl)styrene. 'Y' to the individual unknown 
product (A, B, C, etc.), and 'nnn' to the nominal mass, c Moles of 
product divided by total moles of recovered material. ^ Starting 
material purity assay. ^ Unidentified product which constitutes 
<0.25% total area by GC. /Total moles of recovered material divided 
by moles of starting material used. 9 Total moles of recovered 
material minus moles of recovered starting material divided by total 
moles of recovered material. 
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Table A-II. Products and recovered starting material, total 
recovery of material, and conversion from the FVP of 
2-(o-methylbenzyl)styrene (10) at various tempera­
tures 

yield, % ^ 

entry RT d 600°C 700 °C 800 °C 

ethylbenzene — — — 0.40 

styrene — — — 0.41 

o-ethyltoluene — — — 0.25 

o-methylstyrene — — — 0.39 

indene — — 0.56 1.04 

naphthalene — — — 0.58 

o-benzyltoluene — 0.14 0.46 0.39 

fluorene (14) — — — 0.32 

SA-196 [Cl5^ 16) — 0.16 — — 

o-benzylethylbenzene 1.06 1.05 0.70 0.39 

SB-194 [C15H14] — — 0.40 — 

SC-196 [C15H14] — — 0.22 0.29 

SD-208 [C10H10] — — — 0.16 

SE-206 IC10H24] 0.17 — — — 

SF-180 [C14H12] — — 0.33 — 

SG-194 IC15H14] — 0. 1 4  — 0.19 

SH-208 IC16H16] — 0.55 — — 

Table A-II continues on next page 
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Table A-II. Continued 

yield, % c 

entry RT d 600 °C 700 °C 800 °C 

SI-208 IC16H10] — — — — 

SJ-206 [C16H14] 1.36 1.25 — — 

SK-208 [C16H16] — — 4.32 3.17 

SL-208 [CI6HI6] — — 1.01 — 

SM-196 [C15H14] — 0.98 1.22 — 

SN-208 [C16H16] 0.41 12.13 5.12 0.29 

SO-208 [C16H16] — 0.31 — — 

2-(o-methylbenzyl)styrene (10) 93.54 65.69 13.22 1.24 

SP-208 [C16H16] 0.67 — — 

SQ-210 [C16H18] — 0.50 0.41 0.21 

SR-208 [C16H16] — 0.31 — — 

SS-208 [C16H16I 1.26 — — — 

ST-208 [C16H16I — 1.09 6.56 4.44 

SU-208 IC16H16] — 1.09 1.04 — 

SV-206 [C16H14] — 0.30 — 0.43 

SW-208 [C16H16] 1.55 0.10 — — 

SX _ _ e _ 

SY-208 [C16H16] — 1.24 1.40 1.57 

SZ-208 [C16H16] — 0.11 0.23 — 

SAA-208 [C16H16] — — 0.25 — 

SBB-206 [C16H14] — — — 0.28 

Table A-II continues on next page 
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Table A-II. Continued 

entry 

yield, % c 

entry RT d 600 °C 700 °C 800 °C 

scc-208 [CieHiel — 0.45 1.35 1.44 

SDD-208 [C16H16] — 0.94 — — 

anthracene (15) — 7.24 45.29 62.58 

SEE-208 [C16H16I — 1.07 3.05 0.42 

SFF-208 [C16H16] — 0.15 — 

SGG-208 [C16H16I — 0.23 0.83 0.59 

SHH-208 [C16H16] — 0.46 0.37 — 

SU-192 [C15H12] — — 0.36 

SJJ-208 [C16H16] — — 0.41 0.53 

SKK-206 [C16H14] — — 0.14 

SLL-192 IC15H12I — — 0.35 1.24 

1-methylanthracene (16) — — 7.20 11.78 

9-methylanthracene — 1.26 1.26 0.85 

SMM-206 [C16H14] — 0.18 — 0.23 

SNN-206 [C16H14] — — 2.55 1.57 

SOO-206 [C16H14] — 0.63 — 0.22 

SPP-204 [C16H12] — 0.22 — 0.45 

SQQ-206 [C16H14] — — 0.38 0.30 

SRR-206 [C16H14I — — — 0.41 

recovery f 100.00 75.24 58.45 59.28 

conversion 9 d 51.02 85.34 93.91 

Table A-II continues on next page 
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Table A-II. Continued 
CI FVP conditions: system pressure = 0.10 torr, sample temperature = 
50-60 °C. b See Table I. note b. ^ See Table I, note c. ^ Assay of 
starting material by GC in area percentages. ^ Unidentified product 
which constitutes <0.25% total area by GC. /See Table I. note f. 9 See 
Table I. note g. 
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PAPER 4. COUPLING OF DIRADICALS GENERATED BY 

INTRAMOLECULAR HYDROGEN-ATOM TRANSFERS: 

CYCLIZATION REACTIONS OF ALLYLPHENOLS 
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INTRODUCTION 

We have recently reported findings concerning the conversion of 

o-methallyltoluene (1) to 2,2-dimethylindan (2) and o-(2-methyl-

propenyl)toluene (3) under flash vacuum pyrolysis (FVP) conditions.! 

We postulate that an intramolecular hydrogen-atom transfer occurs to 

give a diradical intermediate (4) which then undergoes coupling or in­

tramolecular disproportionation. We have also reported that FVP of 

3 

2-methyl-2'-vinylbiphenyl (5) at 600-800 °C, gives 9-methyl-9.10-dihy-

drophenanthrene (6), presumably through diradical intermediate 7.2 
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While there are several examples of formation of diradicals or a 

pair of radicals by transfer of a hydrogen atom 

by intramolecular photochemical reactions^ or intermolecular thermal 

reactions4.5,6_ there has been only one other report which presents 

evidence for the formation of a diradical by transfer of a hydrogen 

atom and this is for the cyclization of an organosilicon compound. ̂  

We investigated the FVP reactions of o-allylphenol (8), and 

o-I(l-methylallyl)phenol (9) to determine whether these compounds 

undergo cyclization in the same manner as 1 and 5. 

^ R'H 
I 

R» 'RHg 
: I ^ 

8 9 
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RESULTS 

A summary of the product studies of the flash vacuum pyrolysis 

(FVP) of 2-allylphenol (8) at 0.10 torr (600-800 °C) are presented in 

Table I. At 600 °C, the major product is 2,3-dihydro-2-methylbenzofu-

ran (10). Smaller amounts of benzofuran (11), E-(o-l-propenyl)phenol 

(12), and 2-methylbenzofuran (13) are produced. At 700 °C, the 

amounts of 10-13 increase. At 800 °C, 11 makes up nearly half of the 

product mixture, and the amount of 10 drops. Starting material is 

nearly completely consumed, and 12 is obtained in greater than 10 % 

yield. 

A summary of the product studies of the FVP of 2-(l-methy-

lallyDphenol (9) at 0.10 torr (600-800 °C) are presented in Table II. At 

600 °C, the major product is trans-2,3-dihydro-2,3-dimethylbenzofu-

ran (14), The cis isomer (15) makes up ca. 18 % of the product. 

2,3-Dimethylbenzofuran (16), 13, and 11 are also formed. At 700 °C, 

ociroc5- oc5-
9 14 15 16 
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11 is now the predominant product, and the yield of 13 is much 

higher. The yields of 14 and 15 drop somewhat, a At 800 °C, 11 makes 

up over 70 % of the product mixture, and most of the remainder is 13. 

No other compound represents more than ca. 2.9 % of the mixture. 
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Table I. Products and recovered starting material, total recovery 
of material, and conversion from the FVP of 2-allylphenol 
(8) at various temperatures 

yield, % ^ 

entry 600°C 700 °C 800 °C 

2-allylphenol (8) 49.0 18.1 6.1 

2,3-dihydro-2-methylbenzofuran 
(10) 27.0 37.4 11.1 

benzofuran (11) 10.2 20.6 48.4 

E-(o-l-propenyl)phenol (12) 3.7 6.9 10.1 

2-methylbenzofuran (13) 1.4 4.1 7.2 

AD-134 [CgHioO] 0.9 2.8 1.6 

other products 8.7 e 13.0 e 17.1 e 

recovery / 93.6 81.0 58.5 

conversion 9 51.0 81.9 93.9 

FVP conditions: system pressure = 0.10 torr, sample temper­
ature = 0 °C. b Amounts determined by GC with a known quantity of 
biphenyl added as standard. Data represent the average of triplicate 
runs. Products identified by comparison with authentic samples or 
by retention time and GCMS are indicated by name. Products identi­
fied by GCMS only are indicated by code: XY-nnn, where *X' repre­
sents the experiment where first observed (A = 2-allylphenol. M = 
2-(l-methylallyl)phenol, 'V the individual unknown product (A, B, C, 
etc.), and 'nnn' the nominal mass. ^ Moles of product divided by total 
moles of recovered material. Starting material assay (GC, mole %): 
o-allylphenol (96.4), 2,3-dihydro-2-methylbenzofuran (3.6). ^ See 
Table A-I in the Appendix of Paper 3, this dissertation, for a more de­
tailed analysis. /Total moles of recovered material divided by moles 
of starting material used. 9 Total moles of recovered material minus 
moles of recovered starting material divided by total moles of recov­
ered material. 
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Table II. Products and recovered starting material, total recovery 
of material, and conversion from the FVP of 
2-(l-methylallyl)phenol (9) at various oven tempera­
tures 

yield, % c 

entry 600°C 700 °C 800 °C 

trans-2,3-dihydro-2,3-dimethyl-
benzofuran (14) 40.7 25.6 1.7 

CIS-2,3-dihydro-2,3-dimethylben-

zofuran (15) 18.1 9.1 1.0 

2-(l-methylallyl)phenol (9) ^ 13.7 — — 

2-methylbenzofuran (13) 9.3 21.1 14.5 

2,3-dimethylbenzofuran (16) 3.1 4.8 2.9 

benzofuran (11) 3.0 26.3 71.1 

other products^ 12.0 13.1 8.8 

recovery / 73.1 65.4 64.9 

conversion 9 86.3 100.0 100.0 

^ See Table A-I, note a. b See Table I, note b. ̂  See Table 1, note 
c. ^ Starting material (GC assay, relative area%): 2-(l-methylal-
lyDphenol (98.5), MY-148 (0.8), MP-148 (0.7). e See Table A-II in the 
Appendix of Paper 3, this dissertation, for a more detailed analysis. 
f  See Table I .  note / .  9 See Table I ,  note g.  
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DISCUSSION 

The formation of the major products of the FVP of o-allylphenol 

(S) and o-[(l-methylallyl)phenol (9) are explained by the intramolec­

ular hydrogen-atom transfer/diradical coupling mechanism we have 

proposed. At low temperatures, FVP of 8 affords 2,3-dihydro-2-methyl-

benzofuran (10) as the major component, and small amounts of 

E-(o-l-propenyl)phenol (11) are also formed. The formation of 10 and 

11 can be explained by intramolecular hydrogen-atom transfer of the 

phenolic hydrogen the end of the double bond to give diradical 17.8 

Coupling of 17 would give 10, and disproportionation would give either 

starting material or 12. Secondary pyrolysis of 10 is probably respon­

sible for the formation of compounds 11 and 13. 

Qcy 11 

""or 

12 

Analysis of GCMS and NMR data strongly suggested the production of 

chroman (18), although its presence could not be definitely 

established. The likely route to 18 is by hydrogen transfer to the 
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internal carbon of the double bond followed by coupling of the 

resulting diradical (19) 

The cyclization of 8 to 10 under acid-catalyzed 12 conditions has 

been previously observed. In addition, photolysis of 8 is known to 

afford 10 and 19.^^ The ratio of 10 : 18 we observe at 800 °C 

resembles that reported by Miranda, l^i which adds some support to 

our identification of chroman. 

Recent work by Li^^ in our laboratory indicates that the cycliza­

tion of 10 is reversible. Secondary pyrolysis of 10, which is produced 

from a different precursor, results in the production of substantial 

amounts of 10 and 12, although 11 was the major product. We have 

previously observed that the cyclization of 2,2-dimethylindan (2) is re­

versible, 1 and Li's results are consistent with a hydrogen trans­

fer/diradical intermediate mechanism for 8. 

FVP of o-[{l-methylallyl)phenol (9) gives good yields of both the 

trans- and cis- isomers of 2,3-dihydro-2,3-dimethylbenzofuran (14 and 

15, respectively) as the major products at low temperatures. 14 and 

15 were identified based on analysis of the GCMS and NMR data, 

including comparison to the NMR reported in the literature. ̂  ^ 

Formation of 14 and 15 is consistent with formation and coupling of 

diradical 20. Double bond isomer 21, the anticipated product of dis 
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21 

proportionation of 20, was not found, but it is possible that the 

presence of the a-methyl group leads to fragmentation reactions. 1 

Compounds 11, 13, and 16 are probably the products of secondary 

pyrolysis of 14 and 15. 

A related study concerning the flow pyrolysis behavior of dihy-

drobenzofuran derivatives has been recently published. When dihy-

drobenzofuran (22) is pyrolyzed in a toluene/N2 mixture at 700-750 

°C, o-vinylphenol (23), and 11 are formed in a 1 : 1 ratio. They propose 

that 23 arises by C-O cleavage to give diradical 24, followed by dispro-

portionation of 24. 

14+15 11 13 16 

22 24 23 
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In addition, pyrolysis of a mixture of 14 and 15 under similar 

conditions affords 11 and 13 in a 5 : 1 ratio, which is close to the ratio 

we observed at 800 °C. They propose that ring opening of 14/15 oc­

curs to afford diradical 20, which then loses the a-methyl group to 

give 25. Cyclization of 25 would be followed by loss of either the 

P-methyl group to give 11 or the or p-hydrogen to afford 13. This 

series of reactions could explain formation of some of the secondary 

pyrolysis products we observe, however, cleavage of methyl groups 

21 14+15 

25 

from 14 and 15 directly without ring opening is also possible. Their 

results are consistent with our findings in several respects: high yields 

of 11, formation of 12, and no 21 observed. However, they did not 

report finding any 16. It is possible that the pyrolysis conditions they 

employed disfavored formation of 21. 
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CONCLUSION 

The flash vacuum pyrolysis (FVP) of 2-allylphenol (8) at 0.10 torr 

(600-800 °C) gives 2,3-dihydro-2-methylbenzofuran (10), as the main 

primary product, along with low yields of E-(o-l-propenyl)phenol (12). 

Benzofuran (11) and 2-methylbenzofuran (13) are produced by sec­

ondary pyrolysis of 8. 

Likewise. FVP of 2-( 1 -methylallyl)phenol (9) under similar condi­

tions gives fair yields of 2,3-dihydro-2.3-dimethylbenzofuran (14 and 

15) as a mixture of cis- and trans- isomers. Secondary pyrolysis of 14 

and 15 affords 11, 13, and 2,3-dimethylbenzofuran (16). The formation 

of 10 and 12 from 8 and of 14 and 15 from 9 are consistent with hy­

drogen-atom transfer reactions to afford diradical intermediates (14 

and 19) which then undergo coupling or intramolecular disproportion-

ation. 
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EXPERIMENTAL 

Methods and materials. 

The pyrolysis apparatus has been described previously, ̂  Unless 

otherwise noted, NMR spectra were obtained in dg-methylene chloride 

solution and chemical shifts are relative to tetramethylsilane. NMR 

spectra were recorded on a Nicolet NT-300 spectrometer. GCMS was 

performed on Finnegan 4500 spectrophotometer with 70-eV EI after 

separation on a DB-1701 capillary column or on a Finnegan Magnum 

quadrapole ion-trap spectrophotomer with 70-eV EI after separation 

on a DB-5 capillary column. o-Allylphenol was purchased from Aldrich 

and purified by colum chromatography prior to use. 

Phenyl crotyl ether. Phenyl crotyl ether was prepared by 

Claisen's methodz^a Ir NMR (CD2CI2) 5 7.31-7.19 (m, 2 H), 6.95-6.81 

(m. 2 H). 5.93-5.62 (m, 2 H). 4.42 (dd. Jd = 5.8 Hz, Jd = 0.8 Hz. 2 H). 

1.73 (dd. Jd = 6.1 Hz. Jd = 1.1 Hz. 3 H). 

o-(l-Methylallyl)phenol (9). o-(l-methylallyl)phenol (9) was 

prepared by Claisen's methodi^a 1h NMR (CD2CI2) 5 7.20-7.02 (m. 2 

H). 6.89 (t. Jt = 7.5 Hz. 1 H), 6.77 (d. J = 6.8 Hz. I H). 6.14-5.97 (m, I 

H). 5.21-5.04 (m. 3 H). 3.80-3.64 (m. 1 H). 1.36 (d. J = 7.2 Hz. 1 H); 

[lit. 17 iH NMR (CCI4) 5 7.20-6.55 (m, 4 H). 6.33-5.78 (m. 1 H). 5.30-

4.90 (m. 3 H), 3.93-3.40 (m. 1 H). 1.36 (d. 3 H)]. 

Flash vacuum pyrolysis. Flash vacuum pyrolysis (FVP) was 

performed as previously described. 18 
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Product analysis. FVP reaction mixtures were analyzed by 

capillary gas chromatography as previously described. 15 Flame 

ionization detector response factors were calculated for 8, 10, and 11. 

Compounds 9 and 12 were assumed to have response factors equal to 

8. Compounds 13 and 16 were assumed to have response factors equal 

to 11. Compounds 14 and 15 were assumed to have response factors 

equal to 10. Other compounds were assigned response factors equal to 

biphenyl. 
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APPENDIX 1 

SPECTRA 
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Figure A-1. NMR spectrum (300 MHz, CD2CI2) of the pyrolysis mixture from the FVP 
at 700 °C of o-allylphenol (8) (S: CHDCI2. W: H2O. T: tetramethylsilane). 
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Figure A-2. NMR spectrum (300 Hz. CD2CI2) of the pyrolysis mixture from the FVP of 
o-allylphenol (8) at 800 °C (S: CHDCI2. W: H2O. T: tetramethylsilane). 
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Figure A-3. 1h NMR spectrum (300 MHz. CD2CI2) of o-d-methylallyDphenol (9) (S: 
CHDCI2. W: H2O, T: tetramethylsilane. X: unidentified impurity) 
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Figure A-4. NMR spectrum (300 MHz. CD2CI2) of the pyrolysis mixture from the FVP at 800 
°C of o-(l-methylallyl)phenol (9) (S: CHDCI2, W: H2O. T: tetramethylsilane) 
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APPENDIX 2 

SUPPLEMENTARY DATA TABLES 

Table A-I. Products and recovered starting material, total recovery 
of material, and conversion from the FVP of o-allylphenol 
(8) at various temperatures 

yield, % c 

entry RT d 600°C 700 °C 800 °C 

ethylbenzene — — — 0.29 

m/p-xylene — — — 0.14 

phenylacetylene — — 0.10 0.35 

styrene — — 0.18 0.77 

benzofuran (11) — 10.17 20.56 48.39 

indene — — 0.22 1.12 

1 -phenylpropyne — — — 0.16 

AA-130 [CioHio] — — 0.09 0.12 

AB-132 [CgHsO] — 0.05 — 0.26 

2 -me thy lb enzofuran (13) — 1.41 4.08 7.18 

AC-134 [CgHioO] — — 1.37 

2,3-dihydro-2-methylbenzofuran 3.58 26.gg 37.41 11.12 
(10) 

chroman (19) — 0.86 2.84 1.56 

AE-132 [CgHsO] — — 0.16 0.23 

AF-130 ICioHiol — 0.78 1.88 1.58 

AG-132 [CgHsO] — 0.22 0.50 1.43 

o-cresol — 5.16 3.61 1.88 

Table A-I continues on next page 
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Table A-I. Continued 

entry 

yield, % c 

entry RT d 600 °C 700 °C 800 °C 

AH — — 
e 

— 

AI-146 [C10H12O] — 0.04 0.13 0.15 

AJ-134 [C9H10O] — 1.30 — 4.02 

AK-146 [C10H12O] — — 0.30 0.10 

AL-120 [CsHsO] — 0.28 0.30 0.92 

o-allylphenol (8) 96.42 48.98 18.10 6.09 

AM — 
e 

— — 

AN-132 IC9H8O] — — — 0.11 

AO-132 [C9H8OI — 0.06 0.39 0.50 

E-(o-l-propenyl)phenol (12) — 3.71 6.94 10.12 

recovery / 93.59 80.98 58.52 

conversion 9 d 51.02 81.90 93.91 

FVP conditions: system pressure = 0.10 torr, sample 
temperature = 50-60 °C. ^ Amounts determined by GC with a known 
quantity of biphenyl added as standard. Data represent the average 
of triphcate runs. Products identified by comparison with authentic 
samples or those that could be identified by retention time and 
GCMS are indicated by name. Products that were identified by 
GCMS only are indicated by code: XY-nnn. where 'X' corresponds to 
the system first observed (A = o-allylphenol, M = o-(a-methylal-
lyl)phenol. 'T to the individual unknown product (A, B. C, etc.), and 
'nnn* to the nominal mass, c Moles of product divided by total moles 
of recovered material. ^ Starting material purity assay. ^ Unidenti­
fied product which constitutes <0.13% total area by GC. /Total moles 
of recovered material divided by moles of starting material used. 
P Total moles of recovered material minus moles of recovered starting 
material divided by total moles of recovered material. 



www.manaraa.com

164 

Table A-n. Products and recovered starting material, total 
recovery of material, and conversion from the FVP of 
o-(l-methylallyl)phenol (9) at various tempera­
tures 

yield, % ^ 

entry RT d 600°C 700 °C 800 °C 

toluene 

MA 

MB 

phenylacetylene 

styrene 

MC 

MD-148 [C10H12O] 

ME 

MF 

benzofuran (11) 

indene 

MG-132 IC9H8OI 

MH-148 [C10H12O] 

MI-148 [C10H12O] 

MJ-148 [C10H12O] 

2-methylbenzofuran (13) 

MK-148 [C10H12O] 

ML 

trans-2,3-dimethyl-2,3-dihy-

drobenzofuran (14) 

— 3.04 

— 9.35 

— 0.86 

— 40.72 

2.58 

e 

0.36 

0.43 

e 

26.33 

0.15 

0.38 

21.10 

e 

25.63 

0.70 

/ 

1.33 

0.62 

e 

e 

71.11 

0.50 

0.11 

0.11 

2.32 

14.45 

1.72 

Table A-II continues on next page 
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Table A-n. Continued 

yield, % ^ 

entry RT d 600 °C 700 °C 800 °C 

MM-148 [C10H12O] — — 0.68 0.53 

MN-132 [C9H8O] — — 0.17 — 

MO-136 [C9H1201 — — — 0.38 

cis-2,3-dimethyl-2.3-dihydroben- — 18.12 9.07 1.03 

zofuran (15) 

MP-148 [C10H12O] — 1.00 1.23 0.71 

MQ-148 IC10H12O] — 3.60 0.90 0.48 

MR-146 [CioHioO] — 0.18 0.97 0.24 

MS-146 [CioHioO] — 0.38 — — 

MT-146 [CioHioO] — 0.46 — — 

2,3-dimethylbenzofuran (16) — 3.08 4.79 2.85 

MU-148 IC10H12OI — 0.82 1.70 0.24 

MV-144 [CioHsO] — 1.34 0.40 0.32 

MW-160 [CllHioO] — 1.21 0.42 — 

MX-146 [CioHioO] — — 0.73 — 

MY-148 [C10H12O] — 2.18 — — 

MZ — e 
— — 

MAA — — — e 

o-( 1 -methylallyl)phenol (9) 100.00 13.67 — — 

MCC-136 [C9H12O] — — 2.35 0.13 

Table A-II continues on next page 
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Table A U. Continued 

yield , % c 

entry RT d 600 °C 700 °C 800 °C 

recovery 9 100.00 73.08 65.35 64.92 

conversion ^ d 86.33 100.00 100.00 

<^FVP conditions: system pressure = 0.10 torr, sample temper­
ature = 0 °C. b See Table I. note b. c See Table I, note c. ^ Assay of 
starting material by GC in area percentages. ^ Unidentified product 
which constitutes <0.18% total area by GC. /Unidentified product 
which constitutes <0.43% total area by GC. 9 See Table I, note /. 
^ See Table I ,  note g.  
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GENERAL SUMMARY 

In the first section of this dissertation, two novel thermal re­

actions of ferrocene derivatives have been reported. Flash vacuum 

pyrolysis (FVP) has been used to prepare ferrocenocyclobutene from 

the N-amino-2-phenylaziridine hydrazone of 2-methylferrocenealde-

hyde. Heating of the hydrazone results in formation of 2-methylferro-

cenylcarbene which closes to give ferrocenocyclobutene. Heating of 

ferrocenocyclobutene and N-phenylmaleimide (NPMI) in phenyl ether 

at 200 °C for 30 h gives two stereoisomeric compounds which corre­

spond to 1 : 1 adducts of NPMI and the parent ferrocene-based 

o-quinodimethane. The major product, corresponding to endo-addi-

tion of NPMI to the orgahometallic o-quinodimethane derivative, is 

isolated in 13% yield. Unfortunately, the low yields for the FVP and 

trapping steps suggest that this approach is not feasable for develop­

ment into a synthetic method for preparation of fused-ring com­

pounds. 

Paper 2 concerns the FVP reactions of o-allyltoluene and some 

related compounds. We propose that these reactions take place by 

thermally-induced intramolecular hydrogen-atom transfers which 

generate diradical intermediates. The diradicals can either couple or 

undergo intramolecular disproportionation reactions. Calculated AH 

values for formation of some of the proposed diradicals indicate that 

diradical formation is reasonable at the temperatures of pyrolysis 

(700-900 °C). This reaction has no precedent in hydrocarbon 
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chemistry and could represent a novel means of creating fused-ring 

carbocyclic compounds. 

In Paper 3, we reported that the FVP of 2-methyl-2'-vinyl-

biphenyl affords 9-methyl-9,10-dihydrophenanthrene. The formation 

of this compound fits our proposed mechanism, although other 

mechanisms can be proposed for this cyclization. In contrast, the 

FVP of 2-(o-methylbenzyl)styrene does not give products consistent 

with hydrogen transfer/diradical coupling. Instead, anthracene and 

l-methylanthracene are the major products. While the means of 

their formation is uncertain, a reasonable mechanism involving an 

o-quinodimethane intermediate has been proposed. It is possible that 

the cyclizations of 2-methyl-2'-vinylbiphenyl and 2-(o-methylben-

zyl)styrene could be reasonable models for the formation of phenan-

threne and anthracene substructures found in high-rank coals. 

Paper 4 reports the successful application of this hydro­

gen-atom transfer/diradical coupling reaction to the preparation of 

benzofuran derivatives by the FVP of o-allylphenol and o-(l-methylal-

lyl)phenol. This hydrogen-atom transfer/diradical coupling reaction 

offers considerable possibilities for future research, including 

synthesis of carbocyclic and heterocyclic fused-ring systems. 
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