IOWA STATE UNIVERSITY Digital Repository

[Retrospective Theses and Dissertations](https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10303&utm_medium=PDF&utm_campaign=PDFCoverPages)

[Iowa State University Capstones, Theses and](https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10303&utm_medium=PDF&utm_campaign=PDFCoverPages) **[Dissertations](https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10303&utm_medium=PDF&utm_campaign=PDFCoverPages)**

1993

Thermally-generated reactive intermediates: trapping of the parent ferrocene-based oquinodimethane and reactions of diradicals generated by hydrogen-atom transfers

John Michael Ferguson *Iowa State University*

Follow this and additional works at: [https://lib.dr.iastate.edu/rtd](https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10303&utm_medium=PDF&utm_campaign=PDFCoverPages) Part of the [Organic Chemistry Commons](http://network.bepress.com/hgg/discipline/138?utm_source=lib.dr.iastate.edu%2Frtd%2F10303&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Ferguson, John Michael, "Thermally-generated reactive intermediates: trapping of the parent ferrocene-based o-quinodimethane and reactions of diradicals generated by hydrogen-atom transfers " (1993). *Retrospective Theses and Dissertations*. 10303. [https://lib.dr.iastate.edu/rtd/10303](https://lib.dr.iastate.edu/rtd/10303?utm_source=lib.dr.iastate.edu%2Frtd%2F10303&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800:521-0600

يت الأمر

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2 \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2 \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{2} \left(\frac{1}{\sqrt{2}}\right)^{2} \left(\$

Order Number 9405048

 $\cos(\varphi)$, φ , φ

Thermally-generated reactive intermediates: Trapping of the parent ferrocene-based o-quinodimethane and reactions of diradicals generated by hydrogen-atom transfers

Ferguson, John Michael, Ph.D.

Iowa State University, 1993

 $\overline{\mathcal{E}}$ \mathcal{L}

 $\label{eq:2.1} \frac{1}{\sqrt{2}}\int_{\mathbb{R}^3}\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^2.$

 $\label{eq:1} \mathcal{L}=\mathcal{L}(\mathbf{A}^{(1)})\mathcal{L}(\mathbf{A}^{(2)})$

Thermally-generated reactive intermediates: Trapping of the parent ferrocene-based o-quinodimethane and reactions of diradicals generated by hydrogen-atom transfers

by

John Michael Ferguson

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

> **Department: Chemistry Major; Organic Chemistry**

Approved:

Signature was redacted for privacy.

Iff Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate college

Iowa State University Ames, Iowa

1993

 α , α , β , α

TABLE OF CONTENTS

ii

Ferrocenocyclobutene—N-phenylmaleimide

 \mathcal{L}_{max}

أعارضها عنصب

PAPER 4. COUPLING OF DIRADICALS GENERATED BY INTRAMOLECULAR HYDROGEN-ATOM TRANSFERS; CYCLIZATION REACTIONS OF ALLYLPHENOLS 141

 \mathbb{R}^2

 ω , ω , ω

V

vi

LIST OF FIGURES

 $\sim 10^7$

Page

Figure A-10. ¹H NMR spectrum (300 MHz, CD_2Cl_2) of the **aliphatic region of the crude adduct of ferrocenocyclobutene and NPMI (8 and 9) 31** Figure A-11. ¹H NMR spectrum (300 MHz, CD₂Cl₂) of the **purified major adduct of ferrocenocyclobutene and NPMI (8) 32** Figure A-12. ¹H NMR spectrum (300 MHz, CD_2Cl_2) of the **ferrocenyl and aliphatic regions of the major adduct of ferrocenocyclobutene and NPMI (8) 33 Figure A-13 PAPER 2 Figure A-1. 13c NMR spectrum (75.5 MHz, CD2CI2) of the major adduct of ferrocenocyclobutene and NPMI (8) 34 1h NMR spectrum (300 MHz, CDCI3) of the pyrolysis mixture from the FVP at 800 °C of o-allyltoluene (7)** 72 Figure A-2A. ¹H NMR spectrum (300 MHz, CD₂Cl₂) of **o-methallyltoluene (10) 73A** Figure A-2B. ¹³C NMR spectrum (75.5 MHz, CD₂Cl₂) of **o-methallyltoluene (10) 73B** Figure A-3. $\frac{H}{H}$ NMR spectrum (300 MHz, acetone-d₆) of the **pyrolysis mixture from the FVP at 850 °C of o-methallyltoluene (10) 74**

vii

viii

ix

LIST OF TABLES

- **Table A-VII. Products and recovered starting material from the FVP of o-(4-pentenyl)toluene (24) at various oven temperatures** 100
- **Table A-VIII. Products and recovered starting material from the solution-phase thermolysis of o-methallyltoluene (8) in phenyl ether (240 min, 400 °C) at various concentrations 102**
- **Table A-IX. Estimated AH values for diradical formation from o-allyltoluene (6), o-methallyltoluene (10), o-allylethylbenzene (17), and o-allylcumene (21) and T50% values for the conversion of 6, 10, 17, 21, o-(3-butenyl)toluene (23). and o-(4-pentenyl)toluene (24)**

PAPER 3

Table A-II.

Table I. Products and recovered starting material, total recovery of material, and conversion from the FVP of 2-methyl-2'-vinylbiphenyl at various temperatures 114

88

91

93

95

97

Products and recovered starting material, total recovery of material, and conversion from the FVP of o-methallyltoluene (10) at various tempera-

 $\sim 10^7$

 $\sim 10^{10}$

 $\ddot{}$

 $\bar{\mathcal{A}}$

GENERAL INTRODUCTION

For several years, workers in the Trahanovsky research group have been studying various reactive molecules such as carbenes and o-quinodimethanes (o-QDM's) derived from benzene, furan, and thiophene. o-QDM's have been shown to be reactive intermediates in a number of reactions, and have been used in organic synthesis. We desired to attempt generation of a reactive organometallic o-QDM based on ferrocene, a well-known aromatic organometallic system.

In addition, studies have been directed toward the understanding of the gas-phase thermal reactions of simple organic molecules such as tetralin and benzocyclobutene. During FVP of o-allyltoluene, we observed a rearrangement that appears to involve intramolecular hydrogen-atom transfer, followed by intramolecular coupling or disproportionation of the resulting diradical intermediates. Papers 2 through 4 describe our studies concerning the pyrolytic rearrangements of a number of alkylaryl olefins and allylphenols.

The first section of this dissertation (Paper 1) concerns the preparation of ferrocenocyclobutene as well as the generation and trapping of the parent ferrocene-based o-quinodimethane.

The second section of this dissertation consists of three separate papers, each addressing a different aspect of research concerning the hydrogen-atom transfer/diradical coupling reactions and rearrangements of aryl olefins under FVP conditions. In paper 2, the FVP reactions of o-allyltoluene and several derivatives are discussed. A mech

anism consisting of intramolecular hydrogen-atom transfers to generate diradicals is proposed. Three of the seven systems studied in paper 2 are part of the Ph.D dissertation of James L. Malandra (Iowa State University, 1993). In paper 3, the FVP reactions of two aryl-substituted styrene deriviatives are examined in terms of the mechanism proposed in paper 2. Additional mechanisms for formation of the products observed are suggested. Paper 4 presents the extension of this mechanism to the rearrangement of o-allylphenols under FVP conditions.

Explanation of Dissertation Format

This dissertation consists of four complete papers in the style suitable for publication in journals published by the American Chemical Society. As such, each section has its own numbering system and reference section following the text. The research described in the results and experimental sections was done by the author unless otherwise indicated. Detailed analytical data and/or spectra are contained in appendices following each section. Paper 1 has been previously published as a communication in *Organometallics* **(Vol. 11. pp. 2006-7). Paper 2 is the result of a collaborative project as described above. The material in paper 2 that is part of the Ph.D. dissertation of James L. Malandra (Iowa State University. 1993) is indicated with a footnote. A general summary follows the final paper.**

 $\bar{\nu}$

 $\langle \omega_1, \omega_2 \rangle$, $\langle \omega_2, \omega_3 \rangle$, $\langle \omega_1$

PAPER 1. GENERATION AND TRAPPING OF $π³-(4,5-DIMETHYLENECYCLOPENTENYL)-π⁵-CYCLOPENTADIENTLL-$ **IRON, THE PARENT FERROCENE-BASED o-QUINODIMETHANE**

INTRODUCTION

The reactive molecule o-xylylene (1) is the parent benzene-based

member of the large and important class of reactive molecules called o-quinodimethanes (o-QDM's). o-QDM's have been shown to be transient intermediates in many reactions^{1,2} and have been used extensively as dienes in several organic syntheses.^{1k,m-o},s,t,v,x,z M _{any} **o-QDM's based on aromatic systems other than benzene are known. Examples of these are the o-QDM's which are derivatives of naphtha**lene (2)³ and furan (3).^{2b,4} In general, *o*-QDM's readily undergo reac-

tions such as dimerizations and Diels-Alder reactions which generate the aromatic system on which they are based.^{$1-4$}

Although many o-QDM's have been prepared and studied, only a few organometallic o-QDM's are known. A number of o-xylylene derivatives with a metal coordinated to the exocyclic diene moiety have been synthesized,5 but these compounds lack the high reactivity

 \sim

.

characteristic of free o-xylylenes. Kündig⁶ and Butenschön⁷ have re**cently reported the syntheses of substituted tricarbonylchromium-benzocyclobutene complexes which, when heated in the presence of a dienophile, exhibited chemical behavior similar to that of the uncomplexed analogs. Apparently the chromium-complexed substituted benzocyclobutenes undergo ring opening to give the corresponding complexed substituted o-xylylenes which react with the dienophile at a slightly slower rate than the uncomplexed** species.**G.7 Also, Buten**schön has recently reported generation of a η^3 -(4,5-dimethylenecy**clopentenyl)cobalt complex that appears to exhibit o-QDM-like reactivity.® In this study, we present evidence for the generation and trapping of the parent ferrocene-based o-QDM (4) by the electrocyclic ring opening of ferrocenocyclobutene (5).**

RESULTS

FVP of 2-methylferrocenecarboxaldehyde N-amino-2-phenylaziridine hydrazone (6) at *ca.* **6 x 10"5 torr (380 °C) gave ferrocenocyclobutene (5) in 30-35% yield. Thermolysis of 5 in phenyl ether in the presence of N-phenyl maleimide (7) gave a pair of 1 : 1 adducts in a 11:1 ratio. The major product was purified by recrystallization and identified as adduct 8, which was obtained in 13% isolated yield. The** minor product was not isolated, but analysis of ¹H NMR provided sub**stantial evidence that the minor component was compound 9, a stereoisomer of 8.**

DISCUSSION

It has been shown that carbenes can be conveniently and efficiently generated by the decomposition of N-amino-2-phenylaziridine hydrazones.9 We predicted that 2-methylferrocenylcarbene (10). if it could be generated, would likely undergo C-H insertion to give 5. Hydrazone 6 was judged to be a suitable precursor to 5. Compound 6 was prepared as shown in Scheme 1.

والمعدلونس

Scheme I

FVP of 6 presumably gives molecular nitrogen, styrene, and 2-methylferrocenyl carbene (10) which rearranges to 5 by C-H inser tion.

Compound 5 was obtained in relatively high purity (>95%: the rest of the material was ferrocene, methylferrocene, 1,2-dimethylferrocene, and an unidentified ferrocene derivative, probably 2-methylferrocenylcarbonitrile) but in only fair yields (30-35%).

We had speculated that 10 could undergo rearrangement to give vinylferrocene (11) in analogous fashion to that of o-tolylcarbene (12) to give styrene (13).10 No vinylferrocene was detected, which indicates that carbene 10 does not readily undergo a rearrangement analogous to that of 12.

Evidence for ring opening of 5 to o-QDM 4 was obtained from a trapping experiment analogous to the one used to provide evidence for the production of o-xylylene by the ring opening of benzocyclobutene.lc.ll Compound 5 was heated in the presence of N-phenyl-

maleimide (NPMI) in phenyl ether at 200 °C for 30 h. Compounds 8 and 9, the Diels-Alder adducts of 4 and NPMI. were formed in an 11:1 ratio as determined by ¹H NMR. Compound 8 was separated from this **mixture in pure form in 13% yield; 9 was not isolated in pure form. The stereochemistry of 8 was established based on work by Bitterwolf, which has shown that the chemical shifts of hydrogens** *syn* **to the iron atom are deshielded relative to the** *anti* hydrogens. **12 The tertiary hydrogens in the major isomer were 0.32 ppm downfield relative to the analogous hydrogens in the minor isomer. Based on this chemical shift difference the major isomer was assigned as shown 8 and the minor isomer was assigned structure 9. The stereochemistry of 8 is consistent with** *endo* **addition of 7 to o-QDM 4. Production of these adducts provides strong evidence for the conversion of 5 to 4 under these conditions. The conversion of 5 to 4 is an example of a ring-slippage reac**tion 13 with the hapticity of the reacting ligand changing from η^5 to $η³$. It is uncertain whether a molecule of solvent coordinates with the **iron atom of intermediate 4 to retain the inert gas electronic configuration or whether 4. which is coordinately unsaturated, remains intact long enough to react with NPMI. Reaction of 4 with NPMI to produce 8 and 9 involves changing the hapticity of the re**acting ligand from η^3 to η^5 , which also regenerates the aromatic fer**rocene system.**

CONCLUSION

FVP of 2-methylferrocenecarboxaldehyde N-amino-2-pheny-

laziridine hydrazone (6) affords ferrocenocyclobutene (5) in moderate yield. Thermolysis of 5 at 250 °C is believed to generate the parent ferrocene-based o-QDM (4), which is trapped NPMI to give a pair of 1 : 1 adducts in a 11:1 ratio. The major product was isolated in 13% yield and identified as compound 8, whose structure was consistent with endo-addition of NPMI to the parent ferrocene-based o-QDM (5).

experimental

Methods and materials

The pyrolysis apparatus has been previously described. 14 **Melting points were determined on a Thomas Hoover melting point appa**ratus and are uncorrected. ¹H NMR spectra were obtained on Nicolet NT-300 and Varian VXR-300 instruments. ¹³C NMR spectra were ob**tained on a Varian VXR-300 instrument. Chemical shifts are relative to the accepted chemical shift of the solvent peak unless otherwise noted. GCMS was performed on a Finnegan 4500 spectrophotometer with 70-eV EI after separation on a DB-1 capillary column. Exact mass determinations were performed on a Kratos 50 spectrophotometer. Capillary GC was performed on a Hewlett-Packard 5840A instrument using a DB-1 capillary column. All reactions were carried out under an argon atomsphere unless stated otherwise. Diethyl ether was distilled from Na/benzophenone ketyl. Methylene chloride was distilled from P2O5. Other reagents were purchased as reagent grade and used as received.**

2-Methylferrocenylmethanol. n-Butyllithium in hexanes (2.3 M. 14 mL, 0.0320 mol) was added to a stirred solution of (dimethylamino)methylferrocene (4.0 mL, 4.86 g, 0.020 mol) in ether (12 mL) at 28 °C over 15 min. The red color of the solution deepened somewhat during lithiation. After 4 h, methyl iodide (10 ml, 0.160 mol) was added slowly and the mixture was stirred for at 16 h. The ether, hexanes, and excess methyl iodide were evaporated by warming

كالمتابين

of the flask to *ca.* **40 °C, coupled with blowing argon through the flask. The remaining orange paste of 2-methyl(dimethylamino)methylferrocene methiodide was added to aqueous NaOH (1.0 M, 150 mL), and the mixture was refluxed for 3 h under argon. After cooling, the mixture was extracted with ether (3 x 30 mL). The combined ether portions were washed with water (20 mL portions) until the aqueous layer was neutral to litmus. The ether solution was then washed with brine (3** X **30 mL). then dried {Na2S04). Filtration, followed by removal of the solvent under reduced pressure gave (2-methylferrocenyl)methanol (2.1690 g, 94%).** ¹H NMR (300 MHz, C₆D₆) δ 4.26 (dd, J_d = 23.2, J_d = 12.0 Hz, 2 H), 4.07-4.03 (m, 1 H), 3.93-3.90 (m, 1 H) **3.88 (s, 5 H), 3.85 (t, J = 2.1 Hz, 1 H), 2.36 (br. s, 1 H), 1.86 (s, 3 H).**

2-Methylferrocenecarboxaldehyde. Preparation was based on the method of Sokolov**.15 (2-Methylferrocenyl)methanol (1.91 g, 0.0082 mol) was dissolved in chloroform (80 mL) and then Mn02 (5.31 g, 0.061 mol) was added. The mixture was stirred for 3 d and then filtered through a medium frit. The filtrate was concentrated under reduced pressure and then chromatographed on neutral alumina with 10% EtOAc in hexanes. The first major product fraction was collected and the solvent was removed under reduced pressure to give a dark** red oil. GC and ¹H NMR revealed a small amount of ferrocenecarbox**aldehyde was present, but this was removed by a second chromatography column. After removal of solvent under reduced pressure, 2-methylferrocenecarboxaldehyde was obtained as a dark red oil (0.86** g , 0.0038 mol, 46%). The ¹H NMR spectrum was in excellent agreement with the one reported by Sololov: ¹H NMR (300 MHz, CDCl3) δ **10.10 (s. 1 H). 4.71-4.68 (m. 1 H). 4.51-4.49 (m. 1 H), 4.47 (t. J= 2.5 Hz. 1 H). 4.20 (s. 5 H). 2.25 (s. 3 H).**

N-Phthalimidyl-2-phenylaziridine. Eschenmoser's method of preparation was used. **16 N-Aminophthalimide (8.10 g, 50 mmol) was added to a solution of styrene (67 mL. 0.580 mol) in CH2CI2 (300 mL). This mixture was stirred vigorously and lead tetraacetate (26.06 g, 0.059 mol) was added gradually by powder addition funnel over 1 h. After the addition was complete, the mixture was stirred for 2 h, and then basic alumina (100 g) was added. The suspension was swirled and filtered through a pad of Celite. The solvent was removed and then ether (500 mL) was added. The salts were removed by extraction with water (3 x 50 mL), and then the organic layer was concentrated under reduced pressure. The product was chromatographed on silica gel (200 g) with CH2CI2. Removal of the solvent followed by two recrystallizations from CHCl3/pentane gave pale yellow needles of N-phthalimidyl-2-phenylaziridine (3.42 g, 0.013 mol, 26%): mp 147.9-149.8° C** (lit.²³ mp 152 \degree C). The ¹H NMR spectrum agreed well with that reported by Eschenmoser, although he used CDCl₃ as solvent: ¹H NMR **(300 MHz. CD2CI2) 5 7.80-7.70 (m. 4 H). 7.46-7.34 (m, 5 H), 3.56 (dd.** $J_d = 8.0$, $J_d = 5.9$ Hz, 1 H), 2.90 (dd, $J_d = 8.0$, $J_d = 2.5$ Hz, 1 H), 2.75 (dd. $J_d = 5.9$, $J_d = 2.5$ Hz, 1 H).

N-Amino-2-phenylaziridine. This was prepared as described by Eschenmoser. 16 To a mixture of pentane (67 mL). hydrazine hydrate (16.7 mL), and water (1.7 mL), N-phthalimidyl-2-phenylaziridine

 \bar{z}

بالمحامل

(1.7710 g, 0.00670 mol) was added. The suspension was stirred for 3 h. Care was taken during stirring to avoid formation of an emulsion. The pentane layer was removed by pipet and saved. The aqueous layer was extracted with pentane (3 x 15 mL). The pentane portions were combined, dried (K2CO3), filtered and concentrated under reduced pressure to give N-Amino-2-phenylaziridine (0.7672 g 0.00572 mol, 85%) as a colorless oil. The ¹H NMR spectrum agreed well with that reported by Eschenmoser, although he used CDCl₃ as solvent: ¹H NMR (300 MHz, CD₂Cl₂) δ 7.34-7.18 (m, 5 H), 3.70 (br. s, 2 H), 2.58 **(dd. J= 7.8. 4.6 Hz. 1 H). 1.99 (d. J= 4.6 Hz. 1 H). 1.97 (d. J= 7.8 Hz. 1 H).**

2-Methylferrocenecarboxaldehyde N-(2-Phenylaziridine) Hydrazone (6). A modification of Eschenmoser's procedure was used. **16 N-amino-2-phenylaziridine (0.1921 g. 0.00143 mol) was added to a solution of 2-methylferrocenecarboxaldehyde (0.150 g. 0.00066 mol) in benzene (15 mL). The mixture was stirred for 30 h. The solvent was removed and the resulting dark red oil was chromatographed on neutral alumina with 8% EtOAc in hexanes. The first major fraction was saved and the solvent was removed to give the hydrazone (0.1569 g. 0.00046 mol. 70%) as a dark red oil. The product was isolated as a pair of diastereomers with very similar NMR chemical shifts. While some of the chemical shifts of these diastereomers coincided, others differed slightly. 1h NMR (300 MHz CD2CI2) S 8.55. 8.54 (two s. 1 H). 7.51- 7.31 (m. 5 H). 4.57-4.55 (m. 1 H). 4.32-4.30 (m. 1 H). 4.26 (t. J = 2.4**

للأراد وللمنا

Hz, 1 H), 4.14, 4.13 (two s, 5 H), 3.07-3.01 (two dd. 1 H). 2.51-2.47 (two dd, 1 H). 2.40-2.37 (two dd. 1 H). 2.15, 2.14 (two s, 3 H).

Ferrocenocyclobutene (5). A typical procedure for the pyrol**ysis of 6 is as follows: A sample of 6 (ca. 75 mg, 0.00022 mol) was placed in a Pyrex sample boat and the boat was placed in the sample head. The sample head joint was greased and then attached to the pyrolysis tube which was preheated to 380° C. After evacuation of the apparatus to ca. 6 X 10-5 torr, the sample head was heated to 65° C and then gradually increased to 95° C over 4-6 hours. After the pyrolysis was completed, the system was restored to atmospheric pressure with nitrogen, and the cold trap was removed. The lower white band (styrene) was dissolved in CS2 and the solution was removed from the trap by pipet and discarded. The yellow-orange upper band containing crude product was then removed in a similar manner, concentrated under reduced pressure, and chromatographed on neutral alumina with hexanes. The first major fraction was collected, and the solvent was removed under reduced pressure giving ferrocenocyclobutene (5) in 30-35% yield. Analysis by GC, GC/MS, and NMR confirmed the presence of small amounts of ferrocene** *[ca.* **1.5%), methylferrocene** *[ca.* **0.5%), 1,2-dimethylferrocene (ca. 0.9%), and an unidentified ferrocene derivative with a molecular weight of 225 which is probably l-cyano-2-methylferrocene (ca. 2%). but as these impurities were judged to be unreactive under thermolysis conditions, the product mixture was used for trapping experiments without additional purifi**cation: m.p. 51.1-59.7° C.: m.p. 51.1-59.7 °C; ¹H NMR (300 MHz,

الأرابط المر

C6D6) 5 3.99 (d. J = 2.1 Hz. 2 H), 3.94 (s. 5 H), 3.70 (t, J = 2.1 Hz, 1 H). 2.93-2.83 (AA'BB' m, 2 H), 2.71-2.61 (AA'BB' m. 2 H); 13c NMR (75 MHz, C6D6) 5 92.381, 70.114, 65.688, 61.976, 29.207; MS m/z (relative intensity). 212 (M+. 100), 184 (6.1). 134 (37). 121 (72). 91 (14), 56 (53); HRMS m/z for C12Hi2Fe(M+) calcd. 212.02884, found 212.02934.

Ferrocenocyclobutene-N-phenylmaleimide Adducts (8, 9). Ferrocenocyclobutene (8.9 mg, 0.000042 mol), N-phenylmaleimide (15.1 g, 0.0000872 mol), and 0.5 mL of phenyl ether were mixed in a thickwalled tube. The contents were subjected to four freeze-thaw cycles (- 78° C to 30° C) under vacuum. The tube was sealed, immersed in a heating bath at 200° C for 30 hours, and then allowed to cool. A thin brown band, possibly due to decomposition products, and a small amount of orange precipitate were visible in the orange solution. The tube was opened and the orange solution was removed and saved. The orange precipitate from the tube was dissolved in methylene chloride and removed. The ¹H NMR spectrum indicated that the precipitate **contained two products in a 11:1 ratio. The solution from the tube was chromatographed on neutral alumina with hexanes in order to remove the phenyl ether. Acetone was used to elute the ferrocene products. Upon removal of solvent an orange powder was obtained. This orange powder was combined with the precipate product mixture and the combined mixture was reciystallized from toluene/hexane to give 2.1 mg (0.0000055 mol, 13%) of orange needles which darkened at 185° C. The 1h NMR spectrum of the recrystallized product showed it to be**

the major component of the 11:1 mixture. Comparison of the ¹H NMR **spectrum of the recrystallized product with that of the crude mixture made it possible to assign the stereochemistry of the cycloaddition. The minor (exo) product was not isolated. The only detectable differ**ences in the ¹H NMR spectrum were in the alkyl region. Integration **shows the multiplets from the alkyl protons to be in a 1:1:1 ratio: 8: 1h NMR (300 MHz. CD2CI2) 8 7.53-7.43 (m, 2 H). 7.43-7.37 (m. 1 H). 7.21-7.17 (m. 2 H) 4.15 (d. J = 2.4 Hz. 2 H). 4.14 (s. 5 H). 4.03 (t. J = 2.4 Hz. 1 H). 3.59-3.49 (ABC m, 2 H). 3.03-2.95 (ABC m, 2 H). 2.57- 2.49 (ABC m. 2 H); 13c NMR (75 MHz. CeHe) 6 178.912. 132.556. 129.358. 128.864, 127.008. 83.183. 69.263. 66.545. 65.464. 41.028, 24.170: MS m/z (relative intensity). 385 (M+. 100). 172 (15), 121 (6.9), 121 (6.1). 113 (37). 103 (3.7). 101 (5.6). 56 (5.6); HRMS m/z for** C₂₂H₁₉FeNO₂ (M⁺) calcd. 385.07648, found 385.07654. 9: ¹H NMR **(300 MHz. CD2CI2) 5 (phenyl and ferrocenyl proton signals are obscured by the absorptions of 8) 3.34-3.28 (m). 3.30-2.95 (m). 2.57- 2.49 (m).**

references

- **(1) (a) Cava, M. P.; Napier, D. R. J.** *Am. Chem. Soc.* **1957,** *79,* **1701. (b) Cava, M. P. and Deana, A. A. J.** *Am. Chem. Soc.* **1959,** *81,* **4266. (c) Cava, M. P.; Deana, A. A.; Muth, K. J.** *Am. Chem. Soc.* **1959,** *81,* **6458. (d) Errede, L. A. J.** *Am. Chem. Soc.* **1961,** *83,* **949. (e) Baudet, J. J.** *Chim. Phys. Physichochim. Biol.* **1971,** *68,* **191. (f) Baird, N. C. J.** *Am.* **Chem.** *Soc.* **1972,** *94,* **4941. (g) Flynn, C. R.; Michl, J. J.** *Am. Chem. Soc.* **1973,** *95,* **5802. (h) Flynn, C. R; Michl, J. J.** *Am. Chem. Soc.* **1974,** *96,* **3280. (i) Dolbier, W. R., Jr.; Kazumasa, M.; Michl, J.; Horâk, D. V. J.** *Am. Chem. Soc.* **1977,** *99,* **3876. (j) Michl, J.; Tseng, K. L. J.** *Am. Chem. Soc.* **1977,** *99,* **4840. (k) Oppolzer, W.** *Synthesis* **1978, 793. (1) Roth, W. R.; Biermann, M.; Dekker, H.; Jochems, R.; Mosselman, C.; Hermann, H.** *Chem. Ber.* **1978,** *111,* **3892. (m) Funk, R. L.; Vollhardt, K. P. C.** *Chem. Soc. Rev.* **1980,** *9,* **41. (n) Ito, Y.; Nakatsuka, M.; Saegusa, T. J.** *Am. Chem. Soc.* **1980,** *102,* **863. (o) Nicolaou, K. C.; Bamette, W. E.; Ma, P. J.** *Org. Chem.* **1980, 45, 1463. (p) McCullough, J. J. Acc.** *Chem. Res.* **1980,** *13, 270.* **(q) Roth, W. R.; Scholz, B. P.** *Chem. Ber.* **1981,** *114,* **3741. (r) See also Dolbier, W. R., Jr.; Dulcere, J.-P.; Sellers, S. F,; Koroniak, H.; Shatkin, B. T.; Clark, T. L. J.** *Org. Chem.* **1982, 47, 2298. (s) Ito, Y.; Nakatsuka, M.; Saegusa, T. J.** *A***ttl** *Chem. Soc.* **1982,** *104,* **7609. (t) Taub, D. In** *The Total Synthesis of Natural Products:* **ApSimon, J. W., Ed.; Wiley-Interscience: New York, 1984; Vol. 6, pp. 17-37. (u) Kreile, J.; Munzel, N.; Schulz, R.; Schweig, A.** *Chem. Phys. Lett.* **1984,** *108,* **609. (v) Ciganek, E.** *Org. React.* **1984,** *32,* **72-374. (w) Trahanovsky, W. S.; Macias, J. R. J.** *Am. Chem. Soc.* **1986,** *108,* **6820. (x) Charlton, J. L.; Alauddin, M. M.** *Tetrahedron* **1987,** *43,* **2873. (y) Martin, N.; Seoane, C.; Hanack, M,** *Organic Preparations and Procedures International* **1991,** *23,* **239. (z) Hoey, M. D.; Dittmer, D. C. J.** *Org. Chem.* **1991,** *56,* **1947.**
- **(2) (a) Macias, J. R. Ph.D. Dissertation, Iowa State University, Ames, LA, 1987. (b) Huang, Y.-c. J, Ph.D. Dissertation, Iowa State University, Ames, lA, 1987. (c) Fischer, D. R. Ph.D. Dissertation, Iowa State University, Ames, lA, 1990.**
- **(3) Trahanovsky, W. S.; Chou, C.-H.; Fischer, D. R.; Gerstein, B. C. J.** *Am. Chem^ Soc.* **1988,** *110,* **6579.**
- **(4) Chou, C.-H; Trahanovsky, W. S. J.** *Org. Chem.* **1986,** *51,* **4208 and references cited therein.**
- **(5) (a) Roth, W. R.; Meier, J. D.** *Tetrahedron Letters,* **1967, 2053-8. (b) Johnson, B. F. G.; Lewis, J.; Thompson, D. J.** *Tetrahedron Letters,* **1974, 3789-92. (c) Boschi, T.; Vogel, P.; Roulet, R. J.** *Organometallic Chem.,* **1977,** *133,* **C36-8, (d) Hersh, W. H.; Bergman, R. G. J.** *Am. Chem. Soc.,* **1981,** *103,* **6992-4. (e) Hull, J. W.; Gladfelter, W. L.** *Organometallic s,* **1982, i, 1716-8. (f) Grosselin, J.; Le Bozec, H.; Moinet, C.; Toupet, L.; Kôhler, F.; Dixneuf, P.** *Organometallics,* **1988, 7, 88-98.**
- **(6) Kûndig, E. P.; Bemardinelli, G.; Leresche, J.; Romanens, P.** *Angew. Chem.,* **1990,** *102,* **421-3;** *Angew. Chem. Int. Ed. Engl.* **1990,** *29,* **407-9.**
- **(7) Wey, H. G.; Butenschôn, H.** *Angew. Chem.* **1991,** *103,* **871-3;** *Angew. Chem. Int. Ed. Engl.* **1991,** *30,* **880-1.**
- **(8) (a) Butenschôn, H.** *Angew. Chem.* **1990,** *102,* **1058-9;** *Angew. Chem. Int. Ed. Engl.* **1990,** *29,* **1057-9. (b) Butenschôn, H.** *Angew. Chem.* **1993,** *126,* **1651-1656.**
- **(9) (a) Chen, N.; Jones. M., Jr. J.** *Phys. Org. Chem.* **1988.** *1,* **305- 308. (b) White, W. R.; Platz, M. S.; Chen, N.; Jones, M.. Jr. J.** *Am. Chem. Soc.* **1990.** *112,* **7794-7796. (c) Chen, N.; Jones, M., Jr.; White. W. R.; Platz, M. S. J.** *Amer. Chem. Soc.* **1991,** *113,* **4981- 4992.**
- **(10) a) Jones, W. M.; Brinker, U. H. In** *Pericyclic Reactions,* **Marchand, A. P., Lehr, R. E. Eds.; Academic: New York, 1977; Vol 1, Chapter 3. (b) Jones, W. M. In** *Rearrangements in Ground and Excited States;* **deMayo, P., Ed.; Academic: New York, 1980; Vol 1, Chapter 3. (c) Wentrup, C. In** *Reactive Intermediates;* **Abramovitch, R. A., Ed.; Plenum: New York, 1980; Vol 1, Chapter 4. (d) Wentrup, C.** *Top. Curr. Chem.* **1976,** *62,* **173-251. (e) Vander Stouw, G. G.; Kraska, A. R.; Shechter, H,** *J. Am. Chem. Soc.* **1972, 94, 1655-1661. (f) Baron, W. J.; Jones, M.;**

 \sim \sim

Caspar, P. P. J. *Am. Chem. Soc.* **1970,** *92,* **4739-4740. (g) Hedaya, E.; Kent, M. E. J.** *Am. Chem. Soc.* **1971,** *93,* **3283- 3285. (h) Jones, W. M.; Joines, R. C.; Myers, J. A.; Mitsuhashi, T.; Krajca, K, E.; Waali, E. E,; Davis, T. L.; Turner, A. B. J.** *Am. Chem. Soc.* **1973,** *95,* **826-835. (i) Gleiter, R.; Rettig, W.; Wentrup, C.** *Helv. Chtm. Acta* **1974, 57, 2111-2124,**

- **(11) Jensen, F, R.; Coleman, W. E.; Berlin, A. J.** *Tetrahedron Letters* **1962, 15-18.**
- **(12) Bitterworf, T. E.; Ling, A. C. J.** *Organometallic Chem.* **1981,** *215,* **77-86.**
- **(13) O'Connor, J. M.; Casey, C. P.** *Chem. Rev.* **1987,** *87.* **307-18.**
- **(14) Trahanovsky, W.; Ong, C. C.; Pataky, J. G.; Welti, F. L.; Mullen, P. W.; Clardy, J. C.: Hansen, R. S. J.** *Org. Chem. Soc.* **1971,** *36,* **3575.**
- **(15) Sokolov, V. I.; Troitskaya, L. L.; Reutov, O. A. J.** *Organometallic Chem* **1979,** *182,* **537-46.**
- **(16) (a) Eschenmoser, A.; Felix, D.; Muller, R.; Horn, U.; Joos, R.; Mûller, R. K.; Joos, R.; Felix, D.; Schreiber, J.** *Helv. Chem. Acta.,* **1972.** *55.* **1276-1319. (b) Schreiber, J.; Wintner, C.; Eschenmoser, A. in** *Organic Syntheses,* **Noland, W. E., Ed.; Wiley, New York, 1973; Collect. Vol. VI., pp. 56-61.**

APPENDIX

 ~ 10

 \mathcal{A}

 \mathcal{A}

 $\sim 10^{-11}$

(6) (S: CHDCl₂, W: H₂O, H: high-boiling residue from hexanes, X: unidentified impurity).

Figure A-2. fied NMR spectrum (300 MHz, C₆D₆) of ferrocenocyclobutene (5) (X: unidenti**impurity).**

Figure A-3. ¹H NMR spectrum (300 MHz, C₆D₆) of the ferrocenyl **protons of ferrocenocyclobutene (5) (F: ferrocene, X: unidentified impurity).**

بالمعاد لايم

Figure A-4. ¹H NMR spectrum (300 MHz, C_6D_6) of the AA'BB' quartet caused by the **methylene protons of ferrocenocyclobutene (5).**

 $\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array}$

Figure A-5. ¹³C NMR spectrum (75.5 MHz, C $_6D_6$) of ferrocenocyclobutene (5) (S: solvent).

Figure A-6. ¹³C NMR Attached Proton Test (APT) spectrum (75.5 MHz, C₆D₆) of ferroceno**cyclobutene (5) (positive peaks indicate CH2 groups, negative peaks indicate aromatic CH groups or quaternary carbons; quaternary carbon at** *ca.* **92 ppm could not be observed, due to its low sensitivity to APT).**

 \cdot

÷

HRMS of ferrocenocyclobutene (5) (M⁺: molecular ion, X: unidentified Figure A-7. impurity).

¹H NMR spectrum (300 MHz, CD₂Cl₂) of the ferro-Figure A-9. cenyl region of the crude adduct of ferrocenocyclobutene and NPMI (8 and 9).

 \hat{A}

 φ .

 $\frac{8}{1}$

¹H NMR spectrum (300 MHz, CD₂Cl₂) of the purified major adduct of ferro-
cenocyclobutene and NPMI (8) (S: CHDCl₂, W: H₂O, T: tetramethylsilane, A: Figure A-11. acetone).

¹H NMR spectrum (300 MHz, CD₂Cl₂) of the ferrocenyl and aliphatic regions Figure A-12. of the major adduct of ferrocenocyclobutene and NPMI (8).

 S

paper 2. coupling of diradicals generated by thermal intramolecular hydrogen-atom transfers: cyclization of o-allyltoluene derivatives

introduction

The gas-phase pyrolysis of tetralin (1) involves two major decom**position pathways: (a) loss of ethylene to give benzocyclobutene (2) and styrene (3) and (b) loss of hydrogen to give 1,2-dihydronaphthalene (4) and naphthalene (5). 1-2 In addition to these major products there are many other minor products including o-allyltoluene (6) and indene (7).1'2 and 2-methylindan (8).l**

While studying the effects of pyrolysis temperature on the yields of products obtained by the flash vacuum pyrolysis (FVP) of tetralin (1), we noted that as the pyrolysis temperature increases, the yield of o-allyltoluene (6) decreases but the yield of indene (7) increases. To check the possibility that 6 was the source of 7 we studied the FVP of 6 itself. ^ We found that at ca. 700-800 °C. 2-methylindan (8) is the major product, which differs from results previously reported for the gas-phase reactions of 6.4.5 At higher temperatures (900 °C), 7 is the major product, presumably arising by secondary pyrolysis of 8.

We propose that 8 is produced by a two-step mechanism involving diradical 9 which is formed by an *intramolecular* **thermal hydrogen**

atom transfer, a novel hydrocarbon reaction. To date, the only examples of formation of diradicals or radical pairs by transfer of a hydrogen atom

$$
\begin{array}{cccc}\n\text{RH} & \text{R'H} & \longrightarrow & \text{R}^{\bullet} & \bullet \text{R'H}_2 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow\n\end{array}
$$

have been intramolecular photochemical⁶ reactions and a few inter**molecular thermal reactions.7.8.9 There is only one report which presents evidence for the formation of a diradical by thermally-induced transfer of a hydrogen atom and this is for the cyclization of an organosilicon compound. 10**

In this study, we carried out the FVP of o-allyltoluene (6) in order to investigate the conversion to 7 and 8 and to examine the product mixture for products that would offer support for the existence of diradical 9. We also pyrolyzed a number of substituted derivatives of 6 containing methyl groups on the double bond or the benzylic methyl group (A), with the anticipation that increased substitution would lead to formation of by-products that could offer additional support for existence of diradical intermediates. We also expected the methyl groups to accelerate the reaction by leading to more stable radicals. In addition, we explored the effect of chain length (B) on the reaction to

determine more about the scope and limitations of the hydrogen transfer/diradical coupling reaction. We also carried out the thermolysis of o-methallyltoluene (10) in solution in order to its solution-phase chemistry.

 \sim \sim

results

A summary of the product studies of the flash vacuum pyrolysis FVP of o-allyltoluene (6) at 0.10 torr (700-900 °C) is given in Table 1.3 The major products are 2-methylindan (8) and indene (7). Small amounts of o-(l-propenyl)toluene (11) are produced at 800-900 °C. Low yields of tetralin (1). 1,2-dihydronaphthalene (4), and naphthalene (5) are also produced.

o-Methallyltoluene (10) was pyrolyzed under conditions similar to those for used 6. It was expected that the tertiary radical site of the proposed diradical intermediate (12) would enhance the stability of

the intermediate, resulting in a more facile reaction. The product studies of the FVP of 10 are summarized in Table II. The major product at 700-850 °C is 2,2-dimethylindan (13). Small amounts of l-(o-tolyl)-2-methylpropene (14). 2-methylindene (15) and 3-methylindene (16), 5, and 7 are formed. At 900 °C. the major products are 5 and 7. accompanied by small amounts (ca. 4-10 %) of 8 and 13-16.

2.2-Dimethylindan (13) was pyrolyzed in order to determine which products from the FVP of 10 are due to secondary pyrolysis of 13. The FVP of 13 at 900 °C affords products (Table III) similar to the mixture produced by the FVP of 10 at 900 °C; the major products are 5 and 7. along with low yields (ca. 5-11 %) of 8 and 13-16.

	yield, % c		
entry	700 °C	800 °C	900 °C
o-allyltoluene (6) d	90.9	45.4	6.6
2-methylindan (8)	4.1	25.3	14.1
indene (7)	0.8	6.9	32.0
1,2-dihydronaphthalene (4)	0.6	1.4	1.1
tetralin (1)	0.3	2.7	3.3
o -(1-propenyl)toluene (11)		3.1	3.7
naphthalene (5)		1.0	8.1
other products	3.3 e	14.2 e	31.1 e
recovery J	83.3	88.8	72.8
conversion 9	9.1	54.6	93.4

Table I. Products and recovered starting material from the FVP of o-allyltoluene (6) at various temperatures

FVP conditions: system pressure = 0.10 torr, sample temperature = 0° C. *b* Amounts determined by GC with a known quantity of **biphenyl added as standard. Data represent the average of triplicate runs. Products identified by comparison with authentic samples by retention time and GCMS are indicated by name. Products identified by GCMS only are indicated by code; XY-nnn, where 'X' corresponds** to the system where first observed $(T = 1, 1 \text{ A} = 6, M = 10, E = 17, C$ **= 21. 'V to the individual unknown product (A, B, C, etc.), and 'nnn'** to the nominal mass. ^{*c*} Moles of product divided by total moles of recovered material. ^{*d*} Starting material (yield, %): *o*-allyltoluene (96.5), **m/p-allyltoluene (1.9), toluene (0.6), unidentified product TL-128 with formula CioHg (0.4), naphthalene (0.4), 2,2'-dimethylbiphenyl (0.2). ® See Table A-I in Appendix 2 of Paper 2, this dissertation, for a more detailed analysis. /Total moles of recovered material divided by moles of starting material used.** *9* **Total moles of recovered material minus moles of recovered starting material divided by total moles of recovered material.**

	yield, % c			
entry	700°C	800 °C	850 °C	900 °C
o-methallyltoluene (10) d	89.6	30.2	22.2	6.2
2,2-dimethylindan (13)	4.0	31.7	24.1	9.8
$1-(o-tolyl)-2-methylpropene (14)$	0.7	6.0	6.6	4.7
2 -methylindene (15)	0.4	3.5	4.4	4.0
3-methylindene (16)	0.2	3.3	4.5	5.2
naphthalene (5)	0.1	4.1	6.6	18.8
indene (7)		2.7	5.9	16.6
other products	4.5 e	15.6 e	20.9 e	23.3 e
recovery J	89.0	83.8	81.0	67.3
conversion g	10.4	69.8	77.8	93.8

Table H. Products and recovered starting material from the FVP of o-methallyltoluene (10) at various temperatures

^ See Table I, note *a.* **^ See Table I, note fa.** *^* **See Table I, note c. ^ Starting material (GC assay, mol %): o-methallyltoluene (94.5)** toluene (3.3), unidentified product MM-146 with formula $C_{11}H_{14}$ **(1.4), unidentified product ME-146 with formula C11H14 (0.2), 2,2'-dimethylbiphenyl (0.2). 1-methyl-1-phenylpropene (0.2), propy-Ibenzene (0.1), other minor impurities (total of 0.1). ® See Table A-II in Appendix 2 of Paper 2, this dissertation, for a more detailed analysis. /See Table I, note /.** *9* **See Table I, note** *g.*

entry	yield,% ^c	
naphthalene (5)	24.0	
indene (7)	21.7	
2,2-dimethylindan (13) d	10.7	
3-methylindene (16)	7.4	
2-methylindene (15)	5.4	
$1-(o-tolyl)-2-methylpropene (14)$	5.4	
o-methallyltoluene (10)	4.8	
other products	26.0 e	
recovery f	60.4	
conversion 9	89.3	

Table III. Products and recovered starting material from the FVP of 2,2-dimethylindan (13) at 900 °C a, b ,

 \overline{a} See Table I, note a. \overline{b} See Table I, note \overline{b} . \overline{c} See Table I, note \overline{c} . **^ Starting material (GC assay, area %): 2,2-dimethylindan (97.2), unidentified minor impurities, none of which are present in the pyrolysis product mixtures (2.8). ®See Table A-III in Appendix II-2 of** Paper 2, this dissertation, for a more detailed analysis. *J* See Table I, **footnote /.** *9* **See Table I, footnote** *g.*

 ~ 10

الراجع الفيلة

The FVP reactions of o-allylethylbenzene (17) were also explored. We believed that the methyl group would stabilize the benzylic radical site of the predicted diradical intermediate (18) thus favoring the reaction at lower temperatures.

Pyrolysis of 17 was carried out at 0.1 torr (700-800 °C). At 700 °C, 15, 16. and E-(o-propenyl)ethylbenzene (19), as well as small amounts of ED-146 (see Table I, note *b* **for explanation of nomenclature) are produced. At 750-800 °C. the major products are 8 and 5. Compounds 15, 16. and 19, o-propylstyrene (20), and many minor products are also produced. These results are presented in Table IV.**

In addition, we pyrolyzed o-allylcumene (21), anticipating that the predicted diradical intermediate (22) would be sufficiently

stabilized to allow reaction at even lower temperatures than 17. FVP of 21 was carried out at 0.10 torr (700-750 °C). At 700 °C, low yields of 5, 7, and 16 are obtained, along with small amounts of compounds CC-160. CG-160 (see Table I, note *b* **for explanation of nomenclature). At 750 °C. larger amounts of 5. 7, 16, and many minor compounds are formed. These results are presented in Table V.**

	yield, $%c$		
entry	700 °C	750 °C	800 °C
o-allylethylbenzene (17) d	74.2	48.5	14.6
$AED-146$ [C ₁₁ H ₁₄]	3.9	3.6	2.6
indene (7)	1.9	6.9	22.8
3-methylindene (16)	1.8	4.7	6.7
naphthalene (5)	1.6	5.7	19.3
2-methylindene (15)	1.2	3.6	4.5
E-(o-propenyl)ethylbenzene (19)	1.4	2.2	2.1
o-propylstyrene (20)		1.7	3.6
other products	9.8e	16.9 e	19.8 e
recovery f	78.5	78.7	70.7
conversion g	25.8	51.8	85.4

Table IV. Products and recovered starting material from the FVP of o-allylethylbenzene (17) at various temperatures

^ See Table A-I, note a. ^ See Table I, footnote *b.* **c See Table I, note** *c.* **Starting material (GC assay, area%): o-allylethylbenzene (96.5), unidentified product EL (1.3), 2,2'-diethylbiphenyl (1.2), ethylbenzene (0.8), unidentified product EI (0.5), o-bromoethylben**zene (0.4). ^{*e*} See Table A-IV in Appendix 2 of Paper 2, this dissertation, for a more detailed analysis. $\overline{\hat{f}}$ See Table I, footnote *f.* 9 See Table **I, footnote** *g.*

Table V. Products and recovered starting material from the FVP of from the FVP of o-allylcumene (21) at various temperatures

^ Amounts determined by GC with a known quantity of biphenyl added as standard. ^b Amounts determined by GC with a **known quantity of biphenyl added as standard. Data for 700 °C represent the average of duplicate runs. Data for 750 °C represent the** average of triplicate runs. c See Table I, note c. d Starting material **(GC assay, area%): o-allylcumene (91.8), 2,2'-diisopropylbiphenyl (3.2), unidentified product CP (1.8), cumene (0.7), unidentified product CJ (0.6), unidentified product CF-160 with formula C12H16 (0.5), unidentified product OR (0.5), unidentified product OR-160 with formula C12H16 (0.4), unidentified product OS (0.2), unidentified** product CI-144 with formula C₁₁H₁₂ (0.2). e See Table A-V in **Appendix 2 of Paper 2, this dissertation, for a more detailed analysis. /See Table I, footnote** *f. 9* **See Table I, footnote** *g.*

مادخا مست

The effect of the length of the alkyl chain connecting the double bond and the aromatic ring on the ease of hydrogen-atom transfer was explored through pyrolysis of o-(3-butenyl)toluene (23) and o-(4-pentenyl)toluene (24). Hydrogen-atom transfer and diradical coupling occurred should produce 2-methyltetralin (25) and p-methylbenzosuberane (26), respectively.

The FVP of o-(3-butenyl)toluene3 (23) at 0.1 torr (700-900 °C) produces good yields *[ca.* **40%) of l,2-di(o-tolyl)ethane (27) at 700-800 °C. At 900 °C. significant amounts (ca. 10-20%) of o-xylene (28), benzocyclobutene (2), o-ethyltoluene (29). and styrene (3) are formed. No 2-methyltetralin (25) was detected. These results are presented in Table VI.**

FVP of o-(4-pentenyl)toluene3 (24) was carried out at 0.01 torr (600-800 °C). The major product at 700-800 °C is o-methylstyrene (30). Numerous side products, each produced in small amounts, are formed at high conversion (900 °C). No p-methylbenzosuberane (26) was detected. These results are presented in Table VII. In addition to our studies of gas-phase reactions of these compounds, we explored the solution-phase reactions of 10.

The results of the thermolysis of 10 in phenyl ether (240 min, 400°C) are presented in Table VIII. At a higher starting concentration

	yield, % c			
entry	700 °C	800 °C	900 °C	
o -(3-butenyl)toluene (23) d	64.2	41.7	15.9	
$1,2$ -di(o-tolyl)ethane (27)	34.4	39.4	7.6	
o -xylene (28)	0.4	4.7	18.6	
benzocyclobutene (2)	0.4	3.5	15.2	
o-ethyltoluene (29)		3.0	10.4	
styrene (3)		0.5	6.8	
other products	0.6 e	7.3e	25.5 e	
recovery f	97.8	88.7	110.0	
conversion g	35.8	58.3	84.1	

Table VI. Products and recovered starting material from the FVP **of o-(3-butenyl)toluene (23) at various oven temperatures**

^ See Table I. note a. ^ See Table I, note *b. ^* **See Table I, note c, d Starting material (yield. %): o-(3-butenyl)toluene (100.0). ® See Table A-VI in Appendix 2 of Paper 2, this dissertation, for a more de**tailed analysis. \hat{f} See Table I, note f. 9 See Table I, note g.

 \sim

	yield, % c		
entry	600 °C	700 °C	800 °C
o -(4-pentenyl)toluene (24) d	90.4	52.9	3.0
o-methylstyrene (30)	1.5	30.6	59.8
other products	8.1 e	16.5 e	37.0 e
recovery f	96.2	86.6	70.4
conversion g	9.6	47.1	97.0

Table VII. Products and recovered starting material from the FVP **of o-(4-pentenyl)toluene (24) at various oven tempera**tures \vec{a} , \vec{b}

^ FVP conditions: see Table I, note *a.* **b See Table I, note** *b.* c See Table I, note c . d Starting material (yield, %): o -(4-pentenyl)tol**uene (92.4). 2,2'-dimethylbiphenyl (7.6). unidentified impurity PC** which constitutes <0.35% total area by GC. ^e See Table A-VII in **Appendix 2 of Paper 2, this dissertation, for a more detailed analysis.** *f See* **Table I, note** *f. 9* **See Table I, note** *g.*

of 10, the major product is 14, the double-bond isomer of 10. Small amounts of 5, 13, 15, and 16 are also formed. When the initial concentration of 10 is lowered five-fold, the conversion to 14 is lower. The dependence of conversion upon concentration suggests that a chain mechanism is responsible for the conversion from 10 to 14. The percentages of 5, 13, 15, and 16 do not change significantly.

CI Thermolysis conditions: 0.5 mL of degassed phenyl ether solution was sealed in a glass tube, and then is heated to 400 *°C* **for 240 minutes. b Starting material (GC assay, mol%): o-methallyltoluene (94.5) toluene (3.3), unidentified product TM-146 with formula C11H14 (1.4), unidentified product TE-146 with formula C11H14 (0.2), 2,2'-dimethylbiphenyl (0.2). 1-methyl-1-phenylpropene (0.2), propyl**benzene (0.1), other minor impurites (total of 0.1). ^C See Table A-VIII **in Appendix 2 of Paper 2, this dissertation, for a more detailed analysis.**

discussion

The products of the FVP of o-allyltoluene (6). o-methallyltoluene (10), 2,2-dimethylindan (13), and o-allylethylbenzene (17) offer considerable support for the existence of diradical intermediates during pyrolysis of these hydrocarbons. FVP of 6 affords 2-methylindan (8) whose formation can be explained by the coupling of 9, the predicted diradical intermediate resulting from hydrogen-atom transfer, o-(l-Propenyl)toluene (11), which could arise by intramolecular disproportionation of 9, is also observed.5.11 Indene (7) probably arises

The formation of tetralin (1), which is formed in low yields, also offers support for the proposed mechanism. Hydrogen transfer to the internal carbon of the double bond would give diradical 31, which could undergo coupling to give 1. The formation of 1,2-dihydronaphthalene (4), and naphthalene (5) is probably at least partially due to secondary pyrolysis of 1.

 \bar{z}

للمنافذ والمستوي

Further evidence for the existence of diradical intermediates was obtained through the FVP of 10 (Table II). 2,2-Dimethylindan (13), the major product of FVP of 10, is believed to arise from coupling of diradical intermediate 12. Intramolecular disproportionation of 12 would lead to either starting material or to l-(o-tolyl)-2-methylpropene (14).

The formation 2-methylindene (15) can be explained by loss of a methyl group and a β -hydrogen from **13.** 3-Methylindene (16) is prob**ably formed from 15 by a series of 1,5 hydrogen and 1,5 methyl shifts involving intermediates 32-34, which is reasonable based on the known interconversion of phenyl substituted indenes. 12**

The FVP of dimethylindan (13) at 900 °C gives 10 and 14 as minor products, with 5. 7, 15, and 16 being formed in larger amounts. The formation of 10 and 14 can be explained by cleavage of the C_{α} -C β **bond, affording diradical 12, which then undergoes intramolecular disproportionation to give 10 and 14. The reversibility of the conversion of 10 from 13 further supports the existence of diradical 12.**

The FVP of o-allylethylbenzene (17) produces several compounds that are consistent with the generation of diradical intermediate 18. Once formed by hydrogen-atom transfer, diradical 18 could undergo four reactions affording distinct products: coupling to give *cis-* **and** *trans-* **2,3-dimethylindans (35 and 36, respectively), or three intramolecular disproportionation reactions to give either starting material (17), E-(o-propenyl)ethylbenzene (19), or o-propylstyrene (20).**

Analysis by GC (Table IV), GCMS, and ¹H NMR clearly shows **compounds 19 and 20^3 are formed during the FVP of 17. Intramolecular disproportionation of 18 readily explains their formation. The presence of dimethylindans 35 and 36 could not be firmly established, but it is possible that some minor products, such as ED-146, could be 35 or 36. Unfortunately, these minor products are formed in such small amounts that they could not be clearly identified by GC or NMR, although GCMS shows that these products are isomeric with 17.**

The high yield of 7 and the substantial amounts of 15 and 16 that are formed can be explained by loss of the α -methyl group to give radical 37 followed by loss of either the β -methyl group to give 7 or the **P-hydrogen to give 15, which can then isomerize to 16, as previously** indicated. The loss of the α -methyl group should be relatively facile, **which could explain the lack of readily identifiable amounts of 35 and/or 36 in the product mixtures.**

 ϵ

والمعامل والمقيار

In addition to products that support the existence of diradical intermediates, formation of naphthalene (5) and indene (7) is prominent in most of these pyrolyses, particularly at higher temperatures. Therefore. consideration has been given to their formation. Likely routes to 5 and 7 are described below.

The formation of 5 during the FVP of 6 is probably partially due to secondary pyrolysis of 1. The route from 10 to 5 could involve benzofulvene (38). which is detected in the pyrolysis mixture (ca. 1%). The interconversion of 2-methylindene (15) and 3-methylindene (16). is believed to proceed through 1-methylindene (33). Loss of hydrogen would give **38**, which rearranges to naphthalene.¹⁴

Formation of 5 during the FVP of 17 could also be by way of benzofulvene, but it is also possible that **5** could arise as a result of α -frag**mentation of 17. Compound 17 would give o-allylbenzyl radical (39)**

 \mathbb{Z}^2

55

which could cyclize, giving the 2-tetryl radical (40). Loss of a

Indene (7) is another major product from the FVP of 6. 10, 17. and 21 at high temperatures. Some possible routes to 7 have been described above. The route from 13 to 7 is more uncertain, but a possible route involves stepwise loss of a methyl group, followed by a 1,2 hydrogen shift to give radical 37 and then loss of the β -methyl group **from 37 to give 7.**

Both naphthalene and indene are major products formed in the FVP of o-allylcumene 21 (Table V). Unfortunately, the large amount of lower molecular-weight products resulting from a-fragmentation observed during pyrolyis makes it difficult to determine which products result from α -fragmentation and which, if any, result from secondary **reactions of cyclized products resulting from hydrogen-atom transfer. Brown has observed formation of 5 and 7 during pyrolyses which re**sult in formation of polymethylated indenes, 16 so formation of 5 and 7 **during the pyrolysis of 21 is not unexpected. The pyrolysis of 17 and 21** clearly showed that α -fragmentation is a major pathway if α -methyl **groups are present.**

والمحتم ويب

We investigated the effect of chain length on the hydrogen-atom transfer reaction and cyclization. o-(3-Butenyl)toluene (23) and o-(4-pentenyl)toluene (24) were pyrolyzed. In the FVP of 23, the main reaction is homolytic cleavage of the weak benzylic-allylic carbon-carbon bond (Table VI). The dimerization of the o-methylbenzyl radical (41) which is produced from this bond cleavage, results in the formation of l,2-di(o-tolyl)ethane (27). The allyl radicals (42) should dimerize to form biallyl (43), but none was detected. At 900 °C, the major

products are benzocyclobutene (2), styrene (3), and o-xylene (28), o-ethyltoluene (29). Analogous results for the FVP of 4-phenylbutene (44) were observed by Ondruschka and co-workers. It is likely that 2 is formed by closure of o-xylylene (45), which would result from the loss of a hydrogen atom from 42. Rearrangement of 2 leads to formation of styrene.¹⁸ Compound 28 is probably formed by hydrogen **abstraction by 42, and the route to 29 is uncertain. AH values**

The main product from the pyrolysis of o-(4-pentenyl)toluene (24) (Table VII) is o-methylstyrene (30) which is probably formed, along with propene (46), by a retro-ene reaction. Analogous results for the **FVP of 4-phenylpentene (47) were observed by Ondruschka and co-workers.**

In addition to FVP studies, we investigated the solution-phase reactions of 10. It is clear that the solution-phase chemistry of 10 at 400 °C (See Table Table VIII) differs markedly from its gas-phase reactions. At a starting concentration of **10** of 0.0724 mol L^{-1} , the major **product is double-bond isomer 14. Some cyclized product, 2,2-dimethylindan (13) as well as its secondary products such as 2-methyl- (15) and 3-methylindene (16) were also formed. At a starting** concentration of 10 of 0.0142 mol L^{-1} , the yield of 14 is considerably **lower, and the yield of 13 is slightly higher. The dependence of the formation of 14 on the concentration of 10 shows that the reaction is not unimolecular in nature. We propose that a radical chain mechanism is responsible for this isomerization,**

AH values for the conversions of 6, 10, 17, and 21 into their respective diradicals were calculated using Benson's method. 19 The

AH values for the conversions of 6 to 9, 10 to 12. 17 to 18. and 21 to 22 were estimated to be 45.0, 44.0, 41.5, and 37.9 kcal mol'l, respectively. Assuming that these calculated AH values lie within 2-3 kcal mol⁻¹ of their corresponding ΔH^{\ddagger} values, which is reasonable, given the high energy of the diradical intermediates, the range of ΔH^{\ddagger} values is ca. 40-47 kcal mol⁻¹. This range of ΔH^{\ddagger} is readily accessible **at 700-900 °C.**

We also attempted to estimate ΔG^{\ddagger} values for these conversions **these approximations through use of Scheiss'20 method. By plotting % conversion** *vs.* **temperature using the data in Tables I, II, and IV-VII, the temperature of 50% conversion (T5o%) was determined for 6, 10, 17, 21, 23, and 24 to be 794, 783, 720, 705, 761, and 697 °C,** respectively. (See Appendix 3 for details) ΔG^{\ddagger} values for bond cleavage **of 23 was estimated from activation parameters obtained for homolytic** cleavage of biallyl²¹, and ΔG^{\dagger} for the retro-ene reaction of 24 was **estimated from activation parameters obtained in the retro-ene reac**tion of 1,6-heptadiene.²² The Δ G[‡] values for conversion of 23 and 24 **were calculated to be inversely related to their respective T50% value, rather than the direct relation that is expected. The discrepancy is probably due to uncertainties in the calculations, as well as variance of the oven temperature throughout the heating zone. However, the trends in the T50% values for the conversions of 6, 10. 17. and 21 are reasonable, considering the increasing substitution and stability of the diradicals being formed.**

conclusion

Flash vacuum pyrolysis (FVP) of o-allyltoluene (6), o-methallyltoluene (10), and o-allylethylbenzene (17) give a number of products whose formation is consistent with the existence of diradical intermediates produced by intramolecular hydrogen-atom transfers. ΔH^{\ddagger} val**ues for the diradical intermediates are estimated to be** *ca.* **40-47 kcal mol'l, which are easily accessible at** *ca. 700 °C.*

Some substantial limitations to the hydrogen-atom transfer reaction were revealed during the course of this study. The presence of methyl groups in the benzylic position, such as in o-allylethylbenzene (17) and o-allylcumene (21). causes a-fragmentation to become competitive with hydrogen-atom transfer.

The role of chain length in these cyclizations is critical, as well. FVP of o-(3-butenyl)toluene (23) affords products resulting from cleavage of the weak $C\alpha$ -C β bond, and FVP of o -(4-pentenyl)toluene (24) ap**pears to result in a retro-ene reaction rather than the hydrogen-atom transfer.**

In solution phase, 10 undergoes rearrangement to 12, instead of cyclization. A radical chain mechanism is proposed for the rearrangement.

EXPERIMENTAL

Methods and materials.

Some general methods¹ and the pyrolysis apparatus²³ have been described previously. ¹H NMR spectra were obtained on a Nicolet NT-300 instrument. ¹³C NMR spectra were obtained on a **Varian VXR-300 instrument. Chemical shifts are relative to tetramethylsilane or the accepted chemical shift of the solvent, IR spectra were obtained on a Digilab FTS-7 spectrophotometer. GCMS was performed on a Finnegan 4500 spectrophotometer with 70-eV EI after separation on a DB-1701 capillary column or on a Finnegan Magnum spectrophotometer with 70-eV EI after separation on a DB-5 capillary column. Exact mass determinations were performed on a Kratos 50 spectrophotometer. Combustion analyses were performed by Galbraith Laboratories, Inc.**

o-Allyltoluene (6).3 o-Allyltoluene (6) was prepared by a previously published procedure.⁵ ¹H NMR (CDCl3) δ 7.12 (s, 4 H), 5.94 (qt, J_q = 10.3 Hz, J_t = 6.4 Hz, 1 H), 5.04 (dq, J_d = 10.1 Hz, J_q = 1.6 Hz, 1 **H). 4.98 (dq. Jd = 17.0 Hz. Jq = 1.7 Hz. 1 H). 3.36 (dq. Jd = 6.3 Hz. Jt** $= 1.6$ Hz, 2 H), 2.28 (s, 3 H) [lit.^{2b 1}H NMR (CCl₄) δ 6.94 (s, 4 H), 5.79 (qt, $J_q = 11.3$ Hz, $J_t = 6.5$ Hz, 1 H), 4.93 (m, 1 H), 4.79 (dq, $J_d = 11.3$ Hz, $J_q = 2.1$ Hz, 1 H), 3.24 (dt, $J_d = 6.0$ Hz, $J_t = 1.8$ Hz, 2 H), 2.20 (s, **3 H)l; GCMS m/e (% base peak) 132 (77,5). 117 (100). 115 (42,3). 91 (35.6). 65 (31.6) [lit.2b MS (50 eV) m/e 132 (parent). 117 (base)].**

o-Methallyltoluene (10). o-Methallyltoluene (10) was prepared in 26% yield from o-tolylmagnesium bromide and methallyl chloride by a method patterned after Kurd's procedure:22 1h NMR (300 MHz, CD2CI2) 5 7.18-7.10 (m. 4 H). 4.84-4.80 (m, 1 H)). 4.52-4.50 (m, 1 H)). 3.32 (s. 2 H). 2.27 (s. 3 H). 1.74 (s. 3 H); 13C NMR (75.5 MHz, CD2CI2) 5 144.9, 138.3, 137.3, 130.4, 130.1, 126.6, 126.1, 111.5, 42.0, 22.8, 19.5; IR (thin film) v 3075, 3019, 2970, 2916, 1650, 1494, 1446, 1375, 891 cm-l; GCMS (70 eV) m/e (% base peak) 146 (57.6), 131 (100), 129 (16.1), 128 (17.3), 116 (14.5), 115 (24.0), 105 (11.4), 91 (35.0), 77 (10.4): HRMS m/z for C11H14 (M+) calcd. 146.10955, found 146.10932.

2,2-Dimethylindan-l-one. This was prepared based on the previously published procedure.^{24 1}H NMR δ 7.69-7.60 (m, 2 H), **7.54-7.47 (m, 1 H), 7.45-7.36 (1 H, m), 3.02 (s, 2 H), 1.17 (s, 6 H)**

2,2-Dimethylindan (13). Preparation was based on the previously published procedure.25 1h NMR Ô 7.16-7.02 (m, 4 H), 2.69 (s, 4 H), 1.12 (s, 6 H): GCMS (70 eV) m/e (% base peak) 146 (43.1), 131 (100), 115 (15.2), 91 (26.3).

o-AUylethylbenzene (17). o-Allylethylbenzene (17) was prepared in 31% yield by a method patterned after Kurd's procedure:22 IH NMR δ **7.19-7.09 (m, 4 H), 5.97 (ddt,** J_d **= 16.9 Hz,** J_d **= 10.3 Hz,** J_f $= 6.5$ Hz, 1 H), 5.03-4.91 (m, 2 H), 3.41 (dt, $J_d = 7.31$ Hz, $J_t = 1.5$ Hz, **2 H), 2.65 (q, J= 7.5 Hz. 2 H), 1.18 (t, J= 7.5 Hz, 3 K); 13c NMR (75.5 MHz, CD2CI2) 5 142.7. 138.0. 137.9, 129.8, 128.7, 126.8, 126.2, 115.6, 37.3, 25.9, 15.4; IR (thin film) v 3060, 3014, 2965, 2930, 2870,**

1640, 1600, 1485, 1450, 1430, 990. 912 cm-l; GCMS (70 eV) m/e (% base peak) 146 (24.1). 145 (16.1), 131 (100). 129 (15.0). 128 (12.1), 117 (41.7). 116 (21.5). 115 (35.0), 91 (5.4), 89 (5.2); KRMS m/z for CiiHi4 (M+) calcd. 146.10955, found 146.10926. Anal. Calcd for C11H14: C. 90.35; H. 9.65. Found: C. 88.99; H. 9.66

l-(o-Propylphenyl)ethanol. Preparation was patterned after Seebach's method.26 employing propyl bromide as the electrophile. l-(o-Propylphenyl)ethanol was obtained in 3% yield as a clear oil: NMR 6 7.55-7.47 (m. 1 H). 7.19-7.07 (m. 3 H). 5.16-5.05 (m, 1 H), 3.974 (d, J= 3.9 Hz. 1 H), 2.65-2.56 (m, 2 H), 1.73-1.53 (m. 2 H), 1.37 (d. J = 6.4 Hz, 3 H), 0.96 (t. J = 7.3 Hz. 3 H)

l-(o-Propylphenyl)ethyl acetate. Treatment of l-(o-propylphenyl)ethanol with acetyl chloride in ether and triethylamine gave 1-(o-propylphenyl)ethyl acetate as a clear oil in 55% yield. ¹H NMR δ **7.44-7.36 (m, 1 H), 7.22-7.11 (m, 3 H), 6.09 (q. J = 6.5 Hz. 1 H). 2.75- 2.55 (m. 2 H). 1.99 (s. 3 H). 1.73-1.53 (m. 2 H). 1.67 (d. J = 6.6 Hz. 3 H), 0.97 (t, J = 7.3 Hz. 3 H)**

o-Propylstyrene (20). 1 -(o-Propylphenyl)ethyl acetate was pyrolyzed at 600° C and 0.1 torr. The pyrolysate was dissolved in acetone-d6 and neutralized. ¹H NMR spectroscopy showed peaks that **were consistent with formation of o-propylstyrene (2 0) and E-2-(l-propenyl)-toluene (19) in a ratio of about 4 : 1. Comparison of the GC retention times and GCMS fragmentation patterns of 19 and 20 clearly established that both are produced during the FVP of 17.** Compound 20 was also identified by comparision of 1 H NMR spectra:²⁷ E-2-(1-propenyl)-toluene (19): ¹H NMR δ (aryl protons and methylene protons are obscured due to overlap) 6.68 (dt, J_d = 15.5 Hz, $J_t = 1.5$ Hz, 1 H), 6.13 (qd, $J_d = 15.5$ Hz, $J_q = 7.6$ Hz, 1 H), 1.87 (dd, J_d = 7.6 Hz, J_d = 1.7 Hz, 3 H), 0.93 (t, $J = 7.6$ Hz, 3 H); *o*-propylstyrene (20): ¹H NMR δ (aryl protons of 19 and 20 overlap) 7.34 (dd, $J_d = 17.0$ Hz, $J_d = 11.0$ Hz, 1 H), 5.57 (dd, $J_d = 17.0$ Hz, J_d $= 1.5$ Hz, 1 H), 5.26 (dd, $J_d = 11.0$ Hz, $J_d = 1.5$ Hz, 1 H), 2.66 (t, $J =$ 7.7 Hz, 2 H), 1.58 (m, 2 H), 0.93 (t, $J = 7.3$ Hz, 3 H); [lit.^{26 1}H NMR **(CDCI3) 5 7.2 (m, 4 H), 7.06 (dd, Jd = 17 Hz, J d = 12 Hz, 1 H), 5.66 (d, J = 17 Hz, 1 H). 5.30 (d, J = 12 Hz. 1 H), 2.67 (t, 2 H), 1.60 (m. 2 H).** 1.14 (t, $J = 8$ Hz, 3 H)];

o-Allylcumene (21). o-Allylcumene (21) was formed in 31% yield by the addition of allyl bromide to o-cumylmagnesium bromide in a method patterned after Hurd's procedure: 22 ^1 H NMR (CD₂Cl₂) δ **7.31-7.24 (m. 1 H). 7.22-7.15 (m. 1 H). 7.13-7.07 (m. 2 H), 6.00 (ddt, J= 16.9, 10.3, 6.2 Hz. 1 H). 5.03-4.90 (m. 2 H), 3.43 (dt. J= 5.5, 1.5 Hz. 2 H). 3.19 (septet. J = 6.9 Hz, 1 H), 1.20 (s, J = 7.1 Hz. 6 H); 13c NMR (75.5 MHz, CD2CI2) 5 147.4, 138.3, 137.1, 130.0, 127.0, 126.0, 125.6, 115.5, 37.1, 29.1, 24.0; Anal. Calcd for C12H16: C, 89.94; H, 10.06: IR (thin film) v 3066. 3018, 2962, 2926, 2867, 1636, 1600. 1488. 1449, 1430, 1033, 993, 913 cm"!; HRMS** *m/z* **for C12H16 (M+) calcd. 160.12520, found 160.12530. Anal. Calcd for C12H16: C, 89.94; H, 10.06. Found: C, 89.10; H, 9.80.**

o-(3-Butenyl)toluene (23).3 o-(3-Butenyl)toluene (23) was prepared in 64% yield by the addition of allylmagnesium bromide to α -chloro-o-xylene: ¹H NMR (CDCl₃) δ 7.17–7.07 (m, 4 H), 5.84 (qt, $J_q =$ 10.2 Hz, $J_t = 6.6$ Hz, 1 H), 5.04 (dq, $J_d = 17.1$ Hz, $J_q = 1.5$ Hz, 1 H), 4.98 (ddt, $J_d = 10.2$ Hz, $J_d = 1.8$ Hz, $J_t = 1.2$ Hz, 1 H), 2.73-2.65 (m, **2 H). 2.37-2.27 (m. J = 7 Hz, 2 H). 2.31 (s, 3 H); [lit.28 Ir NMR (CDCI3) 5 7.08 (4 H, broad), 6.2-4.8 (4 H. broad). 2.25 (3 H. s)]: GCMS (70 eV) m/e (% base peak) 146 (15.4). 105 (100). 91 (3.1). 77 (10.9) [lit.26 146. 105 (base peak). 91].**

o-(4-Pentenyl)toluene (24).3 Preparation was based on the procedure reported by Nishimura and co-workers.29 Reaction of o-tolylmagnesium bromide and 5-bromo-1 -pentene afforded o-(4-pentenyl)toluene in 40 % yield: ¹H NMR (CDCl3) δ 7.15-7.05 (m, 4 H). 5.85 (qt, $J_q = 10.2$ Hz, $J_t = 6.7$ Hz, 1 H), 5.04 (dq, $J_d = 17.1$ Hz, $J_q =$ 1.7 Hz, 1 H), 4.98 (ddt, $J_d = 10.2$ Hz, $J_d = 2.2$ Hz, $J_t = 1.2$ Hz, 1 H), **2.64-2.55 (m, 2 H), 2.30 (s, 3 H), 2.19-2.11 (m, 2 H). 1.71-1.65 (m. 2 H) Ilit.30 1H NMR (CDCI3) 6 7.08 (4 H). 5.88 (1 H), 5.05 (2 H), 2.60 (2 H), 2.28 (3 H), 2.6-1.3 (4 H)]; GCMS (70 eV) m/e (% base peak) 160 (16.4). 118 (78.4). 106 (33.8), 105 (100), 91 (40.7). 77 (26.7).**

Flash vacuum pyrolysis. Flash vacuum pyrolysis (FVP) was performed as described by Malandra. 1

Product analysis. FVP reaction mixtures were analyzed by capillary gas chromatography on Hewlett-Packard HP5840A and HP5890 gas chromatographs equipped with a 30-m (0.25-µm film **thickness) DB-1701 capillary column and a flame ionization detector. The temperature program on the HP5840A was set at 80 °C for 10 min. followed by heating at 3 °C min'l to a final temperature of 250**

مارونه المرام المستند

°C. The temperature program on the HP5890 was set at 70 °C for 10 min, followed by heating at 3 °C min'l to a final temperature of 250 °C.

GC analysis was performed by injecting 1 μ L of the py**rolysate/biphenyl solution. Triplicate pyrolyses were performed, with the exception of FVP of 21 at 700 °C, for which duplicate analysis was performed. Peaks not appearing in all GC traces for a series of pyrolysis runs were discarded. For most major compounds, FID response factors were calculated (1-7, 10, 13, 28-30, toluene, ethylbenzene, m/pxylenes, 1-methylnaphthalene, and 2-methylnaphthalene). Other compounds were assigned a response factor equal to biphenyl. Except where noted, percentages are for moles of product relative to total moles of starting material. Identification of products was based on GC retention time of authentic samples or those samples whose identity could be clearly established by NMR or GCMS. GCMS was used to determine the molecular weights of minor products where possible.**

references

- **(1) Malandra, J. L.; Zhu, J.; Lee, S.-K.; Spurlin, S. R.; Tunkel, J. L.;** Fischer, D. R.; Yeung, E. S.; Trahanovsky, W. S. J. Am. Chem. *Soc.* **Submitted for publication.**
- **(2) (a) Berman, M. R.; Comita, P. B.; Moore, C. B.; Bergman, R. G. J.** *Am. Chem. Soc.* **1980,** *102,* **5692-4. (b) Comita, P. B.; Berman, M. R.; Moore, C. B.; Bergman, R. G. J.** *Phys. Chem.* **1981,** *85,* **3266.**
- **(3) Malandra, J. L. Ph.D. Dissertation, lowa State University of Science and Technology, 1993.**
- **(4) Lambert and co-workers carried out static gas-phase pyrolysis of 6 at 350-400 "C. They reported o-tolylpropene, methylindan (isomer not specified), and tetralin as major products, and** o-xylene, o-ethyltoluene, o-methylstyrene, o-propyltoluene and **naphthalene as "possible minor products". No toluene was detected. See: Lambert, J. B.; Fabricius, D. M.; Hoard. J. A. J.** *Org. Chem.* **1979, 44, 1480.**
- **(5) Hurd reported that under flow pyrolysis conditions (650-700 °C), 6 gives o-xylene, toluene, and unchanged starting material as liquid products, as well as solid material, the major portion of** which was naphthalene. See: Hurd, C.D.; Bollman, H. T. J. Am. *Chem. Soc.* **1934,** *56,* **477.**
- **(6) For a recent review of solution-phase reactions of photochemically generated diradicals, see Johnston. L. J.; Scaiano, J. C.** *Chem. Rev.* **1989,** *89,* **521.**
- **(7) Poutsma, M. L.** *A Review of Thermolysis Studies of Model Compounds Relevant to Processing of Coal;* **ORNL/TM-10673, Oak Ridge National Laboratory, Oak Ridge, TN 37831. This review is available from National Technical Information Service, U. S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.**

كالمتحصص

- **(8) (a) Benson, S.** *Int. J. Chem. Kinet.* **1980,** *12,* **755. (b) Allen, D. T.; Gavalas, G. R.** *Int. J. Chenu Kinet.* **1983,** *15* **219. (c) Franz, J. A.; Camaioni, D. M.; Belshline, R. R,; Bailing, D. K. J.** *Org. Chem.* **1984,** *49.* **3563. (d) Billmers, R.; Griffith, L. L.; Stein, S. E. J.** *Phys. Chem.* **1986,** *90,* **517. (e) Billmers, R.; Brown, R. L.; Stein, 5. E. J.** *Chem. Kinet.* **1989** *21,* **375. (f) Poutsma, M. L.** *Chem. Rev.* **1989,** *90,* **113.**
- **(9) (a) Mayo, F. R. J.** *Am. Chem. Soc.* **1968,** *90,* **1289. (b) Kirchner. K.** *Makromol. Chem.* **1969,** *128,* **150. (c) Buchholz, K.; Kirchner, K,** *Makromol. Chem.* **1976,** *177,* **935. (d) Olaj, O. F.; Kauffmann, H. F.; Breitenbach, J. W.** *Makromol. Chem.* **1977,** *178,* **2707.**
- **(10) Bain, S.; Ijadi-Maghsoodi, S.; Barton, T. J.** *Organometallics,* **1987,** *6,* **1136.**
- **(11) Formation of disporportionation products has been previously interpreted as evidence for existence diradical intermediates. See Leung, M-k.; Trahanovsky, W. S. J.** *Am. Chem. Soc.* **Submitted for publication.**
- **(12) (a) Koelsch, C. F.; Johnson, P. R. J.** *Am. Chem. Soc.* **1943,** *65,* **567. (b) Miller, L. L.; Boyer, R. F. J.** *Am. Chem. Soc.* **1971,** *93,* **650.**
- **(13) A mixture of 19 and 20 were prepared by pyrolysis of l-(o-propy-Iphenyl)ethyl acetate at 600 °C. Identification was based on anal**ysis of ¹H NMR spectra. Comparison of ¹H NMR spectra, GC **retention times and GCMS fragmentation patterns. Compound 20 was identified by comparision to the previously reported NMR spectrum of 20. See the Experimental Section for preparation of the 1 -(o-propylphenyl)ethyl acetate and its precursors.**
- **(14) Scott. L. T.; Hashemi, M. M.; Schultz, T. H.; Wallace, M. B. J.** *Am. Chem. Soc.* **1991,** *113,* **9692.**
- **(15) Malandra, J. L.; Trahanovsky, W. S. J. Am.** *Chem. Soc.* **Submitted for publication.**
- **(16) Brown, R. F. C.; Gream, G. E.; Peters, D. E.; Solly, R. K.** *Aust J. Chem.* **1978,** *31,* **2223.**
- **(17) Ondruschka, B.; Zychlinski, W.; Bach, G.; Zimmermann. G. J.** *Prakt. Chem.* **1989,** *331,* **977.**
- **(18) (a) Baron, W, J.; DeCamp, M. R.** *Tetrahedron Lett.* **1973, 4225-8. (b) Berman, M. R.; Comita, P. B.; Moore. C. B.; Bergman, R. G. J.** *Am. Chem. Soc.* **1980.** *102,* **5692-4. (c) Swenson, K. E.; Trahanovsky. W. S.** *J. Org. Chem.* **1981,** *46,* **2984-5. (d) Chapman, O. L.; Tsou, U. E. J.** *Am. Chem. Soc.* **1984,** *106,* **7974- 6. (e) Swenson, K. E.; Trahanovsky, W. S. J.** *Am. Chem. Soc.* **1984,** *106,* **7976-8. (d) Chapman. O. L.; Tsou. U. E.; Johnson. J. W.** *J. Am. Chem. Soc.* **1987.** *109,* **553-9. (e) Chapman, O. L.; Johnson. J. W.; McMahon, R. J.; West, P. R. J.** *Am. Chem. Soc.* **1988,** *110,* **501-9**
- **(19) Benson, S. W.** *Thermochemical Kinetics,* **2nd ed.; Wiley: 1976.**
- **(20) Schiess. P.** *Thermochimica Acta* **1987.** *112,* **31.**
- **(21) Frey, H. M.; Walsh, R.** *Chem. Rev.* **1969,** *69,* **103.**
- **(22) Egger, K. W.; Vitins. P. J.** *Am. Chem. Soc.* **1974,** *96,* **2714.**
- **(23) (a) Trahanovsky, W. S.; Ong, C. C.; Pataky, J. G.; Weitl, F. L.; Mullen. P. W.: Clardy. J. C.; Hansen. R. S. J.** *Org. Chem. 1971, 36,* **3575. Commercial apparatus is available from Kontes Scientific Glassware, Vineland, NJ 08360. (b) For review, see Brown. R. F, C.** *Pyrolysis Methods in Organic Chemistry;* **Academic: New York, 1980, Chapter 2,**
- **(24) Yeung, L. L.; Yip. Y. C.; Luh, T.-Y. J.** *Org. Chem.* **1990,** *55,* **1874.**
- **(25) Warrick, P.. Jr.; Saunders. W. H.. Jr. J.** *Am. Chem. Soc.* **1962.** *84,* **4095.**
- **(26) Meyer. N.; Seebach. D.** *Angew. Chem.* **1978.** *90,* **553;** *Angew. Chem. Int. Ed. Engl.* **1978,** *17,* **521.**
- **(27) Crow, W. D.; McNab, H.** *Aust. J. Chem.* **1979,** *32,* **89.**
- **(28) Julia, M.; Foumeron, J.-D.** *Bull. Soc. Chim. Fr.* **1975, 770.**
- **(29) Nishimura, J.; Yamada, N.; Horiuchi, E. U.; Ohbayashi, A.; Oku, A.** *Bull Chem. Soc. Japan* **1986,** *59,* **2035.**
- **(30) Ellls-Davies, G. C. R.; Gilbert. A.; Heath, P.; Lane, J. C.;** Warrington, J. V.; Westover, D. L. J. Chem. Soc., Perkin Trans. 2 **1984, 1833.**

appendix 1 spectra

 $\sim 10^{-1}$

 $\bar{\bar{z}}$

 $\label{eq:2} \frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1}{\sqrt{2}}\sum_{i=1}^n\frac{1$

 \sim

Figure A-1. ¹H NMR spectrum (300 MHz, CDCl3) of the pyrolysis mixture from the FVP **at 800 °C of o-allyltoluene (6) (S: chloroform. W: H2O).**

Figure A-2B. $13C$ NMR spectrum (75.5 MHz, CD₂Cl₂) of *o*-methallyltoluene (10) (S: **CD2CI2. T: tetramethylsilane).**

Figure A-3. ¹H NMR spectrum (300 MHz, acetone-d₆) of the pyrolysis mixture from the **FVP at 850 °C of o-methallyltoluene (10) (S: acetone-ds, W: H2O).**

¹H NMR spectrum (300 MHz, acetone- d_6) of o-allylethylbenzene (17) (S: acetone- d_5 , W: H₂O, X: unidentified impurity). Figure A-4A.

Figure A-4B. ¹³C NMR spectrum (75.5 MHz, CD₂Cl₂) of *o*-allylethylbenzene (17) (S: CD₂Cl₂, T: tetramethylsilane).

 Δ

¹H NMR spectrum (300 MHz, acetone-d₆) of the pyrolysis mixture from the FVP at 750 °C of o-allylethylbenzene (17) (S: acetone-d₅). Figure A-5.

Figure A-7. **1h NMR spectrum (300 MHz. acetone-de) of l-(o-propylphenyl)ethanol (S: acetone-ds, W: HgO).**

00 o

A18

Figure A-10B. 13 C NMR spectrum (75.5 MHz, **CD2CI2. T; tetramethylsilane). CD2CI2) of o-allylcumene (21) (S:**

Figure A-11. ¹H NMR spectrum (300 MHz, acetone- d_6) of the pyrolysis mixture from the FVP at 700 °C of o-allylcumene (2i) (S: acetone-d₅ W: H₂O).

Figure A-12. ¹H NMR spectrum (300 MHz, acetone-d₆) of the pyrolysis mixture from the FVP at 750 °C of o-allylcumene (21) (S: acetone-d₅ W: H₂O).

 83

Figure A-13. ¹H NMR spectrum (300 MHz, CDCl3) of the pyrolysis mixture from the FVP at 800 °C of o -(4-pentenyl)toluene (24) (S: chloroform, W: H₂O).

APPENDIX 2

SUPPLEMENTARY DATA TABLES

Table A-I. Products and recovered starting material, total recovery of material, and conversion from the FVP of o-allyltoluene (6) at various temperatures a **,** b

 $\sim 10^{-1}$

Table A-I continues on next page

 \bar{z}

 $\sim 10^{-10}$

<u>American property</u>

 \mathbb{R}^2

Table A-I continues on next page

 $\mathcal{L}_{\mathcal{A}}$

FVP conditions: system pressure = 0.10 torr, sample temperature = 0 °C . \bar{b} Amounts determined by GC with a known **quantity of biphenyl added as standard. Data represent the average of triplicate runs. Products identified by comparison with authentic samples by retention time and GCMS are indicated by name. Products that were identified by GCMS only are indicated by code: XY-nnn, where 'X' corresponds to the system where first observed (T)** $= 1, A = 6, M = 10, E = 17, C = 21, B = 23, P = 24, Y'$ to the **individual unknown product (A, B. C. etc.). and 'nnn' to the nominal mass, c Moles of product divided by total moles of recovered material.** *d* **Starting material purity assay. ^{***e***} Unidentified product** which constitutes $\leq 0.25\%$ total area by GC. f Total moles of recovered **material divided by moles of starting material used.** *9* **Total moles of recovered material minus moles of recovered starting material divided by total moles of recovered material.**

المنافسين وللسو

 \bar{z}

Table A-H. Products and recovered starting material, total recovery of material, and conversion from the FVP of o-methallyltoluene (10) at various temperatures

Table A-II continues on next page

 $\sim 10^7$

Table A-n. Continued

 ~ 10

 $\sim 10^{-11}$

 \sim

Table A-IÎ continues on next page

a **FVP conditions: system pressure = 0.10 torr, sample temperature = 0 °C. b See Table A-I, note** *b.* **c Moles of product divided by to**tal moles of recovered material. d Starting material purity assay. e Unidentified product which constitutes $\leq 0.43\%$ total area by GC. **/Total moles of recovered material divided by moles of starting material used.** *9* **Total moles of recovered material minus moles of recovered starting material divided by total moles of recovered material.**

entry	yield,% ^c
toluene	3.12
DA	е
DB	\int
DC	\boldsymbol{e}
ethylbenzene	4.08
o-xylene (28)	0.90
benzocyclobutene (2)	0.26
propylbenzene	1.39
o-ethyltoluene (29)	1.22
o-methylstyrene (30)	0.17
DD	e
DE	\boldsymbol{e}
indene (7)	21.67
DF	е
DG	\boldsymbol{e}
2,2-dimethylindan (13) d	10.67
DH	\int
o-methallyltoluene (10)	4.78
$1-(o-tolyl)-2-methylpropene (14)$	5.01
3-methylindene (16)	7.41
[C10H10] MI-130	1.93
MJ-130 [C10H10]	1.55

Table A-III. Products and recovered starting material, total re**covery of material, and conversion from the FVP of 2.2-dimethylindan (13) at 900 °C**

Table A-in continues on next page

Table A-III. Continued

entry	yield,%c
2-methylindene (15)	5.38
benzofulvene (38)	3.11
naphthalene (5)	24.01
DI-144 [C11H12]	.0.21
MP-144 [C11H12]	0.14
MS-144 [C11H12]	0.13
2-methylnaphthalene	1.81
1-methylnaphthalene	0.98
2,2'-dimethylbiphenyl	0.08
DJ	e
DK	\boldsymbol{e}
recovery g	60.35
h conversion	88.33

^{*a*} See Table A-I, note *a.* ^{*b*} See Table A-I, note *b.* ^{*c*} See Table A-I, note c. ^d Assay of starting material in relative area percent: **(2,2-dimethylindan (97.2), unidentified impurities, none of which are** detected in the product mixtures (2.8) ^{*e*} Unidentified product which constitutes $\leq 0.35\%$ total area by GC. *f* Unidentified product which constitutes $\leq 1.82\%$ total area by GC. *9* See Table A-I, note *f.* ^h See **Table A-I, note** *g.*

	yield, % c			
entry	RT ^d	700 °C	750 °C	800 °C
ethylbenzene	0.84	0.78	1.31	2.02
o-xylene (29)				0.70
styrene (3)		0.60	1.73	3.64
allylbenzene		0.28	0.52	0.42
o-ethylstyrene (30)		2.62	5.24	5.47
EA				ϵ
indene (7)		1.90	6.91	22.84
2-methylindan (8)		4.16	6.21	4.02
MD-130 [C10H10]		0.37	0.78	0.34
EB-146 $[C_11H_14]$		1.14	0.33	1.03
o-bromoethylbenzene	0.35	0.44	0.98	0.70
o-allylethylbenzene (17)	95.84	74.17	48.49	14.62
EC-146 $[C_11H_14]$		0.21	0.29	
$ED-146$ [C ₁₁ H ₁₄]		3.91	3.58	2.56
$EE-146$ $[C11H14]$		0.66		
3-methylindene (16)		1.83	4.70	6.72
$EF-146$ [C ₁₁ H ₁₄]				0.58
o-propylstyrene (20)			1.70	3.55
2-methylindene (15)		1.76	4.56	6.37
ML-128 [C10H8]			0.27	
E-(o-propenyl)ethylbenzene (19)		1.36	2.22	2.10

Table A-IV. Products and recovered starting material, total recovery of material, and conversion from the FVP of o-allylethylbenzene (17) at various temperatures

Table A-IV continues on next page

 $\mathcal{L}_{\mathcal{A}}$

		yield, % c		
entry	RT ^d	700 °C	800 °C	900 °C
EG			\boldsymbol{e}	
EH	0.47			
naphthalene (5)		1.57	5.72	19.28
$E1-146$ [C ₁₁ H ₁₄]		1.43	2.01	1.01
EJ-144 $[C_11H_12]$		0.37	0.19	
$MP-144$ [C ₁₁ H ₁₂]			0.25	
EK	1.33			
MQ-144 [C11H12]			0.23	
$EL-144$ $[C11H12]$			0.76	0.59
2-methylnaphthalene			0.39	0.62
1-methylnaphthalene			0.60	0.81
2,2'-diethylbiphenyl	1.17	0.31		
recovery f	100.00	78.45	78.67	70.68
conversion 9		41.81	61.85	89.67

Table A-IV. Continued

 $\ddot{}$

^ See Table A-I, note a. ^ See Table A-I, note *b.* **c See Table A-I, note c. ^ Assay of starting material. Percentages given are of relative** area by GC. ϵ Unidentified product which constitutes $\leq 0.22\%$ total **area by GC.** *f See* **Table A-I. note** *f. 9* **See Table A-I, note** *g.*

 \bar{z}

	yield, % c		
entry	RT ^d	700 °C e	750 °C
ethylbenzene			0.96
o -xylene (28)			0.75
styrene (3)		0.67	2.36
cumene	0.74	1.21	1.11
allylbenzene		0.41	0.57
o-ethyltoluene (29)		2.21	3.29
o-ethylstyrene (30)		2.81	3.67
indene (7)		1.74	6.60
CA-146 [C11H14]		2.79	3.41
MD-130 [C10H10]		0.66	1.45
$CB-146$ [CI1H14]		1.19	1.18
$CC-160$ [CI2H16]		4.35	3.37
CD		\boldsymbol{f}	
3-methylindene (16)		3.56	8.19
CE-146 [C11H14]		1.02	0.81
o-allylcumene (21)	91.84	53.51	19.88
$CF-160$ [CI2H16]	0.52	0.68	2.58
$CG-160$ [CI2H16]		2.50	5.10
CH-160 [C12H16]		2.28	
$CI-144$ [C11H12]	0.15	0.68	0.72
ML-128 [C8H10]		1.95	3.09

Table A-V. Products and recovered starting material, total recovery of material, and conversion from the FVP of o-allylcumene (21) at various temperatures

Table A-V continues on next page

Table A-V. Continued

^ See Table A-I, note *a.* **^ See Table A-I, note b. c See Table A-I, note c. d Assay of starting material. Percentages are of relative area** by GC. ^e Duplicate runs performed, rather than triplicate runs. *f* **Unidentified product which constitutes <0.52% total area by GC.** *9* **See Table A-I. note** *f.* **^ See Table A-I, note** *g.*

 $\Delta \sim 10^4$

 $\begin{aligned} \mathbf{L} & \mathbf{L} \mathbf{$

Table A-VI. Products and recovered starting material, total recovery of material, and conversion from the FVP of o-(3-butenyl)toluene (23) at various tempera $tures$ a, b ,

	yield, % c			
entry	RT ^d	700 °C	800 °C	900 °C
toluene				2.29
ethylbenzene				1.59
m/p -xylene				0.75
o -xylene (28)		0.40	4.70	18.58
styrene (3)			0.46	6.80
benzocyclobutene (2)		0.36	3.51	15.24
allylbenzene				0.23
propylbenzene				0.32
o-ethyltoluene (29)			2.97	10.37
o-methylstyrene (30)			0.51	2.14
indan				0.13
m/p-allyltoluene			0.95	3.83
o-allyltoluene (6)			0.21	0.40
BA			\boldsymbol{e}	
indene (7)			0.34	1.64
2-methylindan (8)				0.22
o-methylbenzaldehyde		0.33	0.39	0.21
o - $(1$ -propenyl)toluene (11)				0.15
B B-146 $[C_11H_14]$			0.16	0.43
$BC-146$ $[C11H14]$			0.16	0.22

Table A-VI continues on next page

 \mathcal{L}

 $\langle \omega_{\rm{max}} \rangle$, $\langle \omega_{\rm{max}} \rangle$

Table A-VI continues on next page

et FVP conditions: system pressure = 0.010 torr, sample temperature = 0 °C. \overline{b} Amounts determined by GC with a known **quantity of biphenyl added as standard. Data for 700 °C represent the average of duplicate runs. Data for 750 °C represent the average of triplicate runs. See Table A-I, note** *b* **for notation.^ See Table A-I,** note c. d See Table A-I, note d . e See Table A-I, note e . f See Table A-I, **note /.** *9* **See Table A-I, note** *g.*

٠ × ۰.	
--------------	--

Table A-VI. Products and recovered starting material, total recovery of material, and conversion from the FVP of o-(4-pentenyl)toluene (24) at various temperatures

 $\sim 10^{-1}$

كالمحام وتست

Table A-VII continues on next page

 \mathcal{L}

^ See Table A-Il, note *a.* **^ See Table A-I, note** *b.* **c See Table A-I, note c. d See Table A-I, note d. ® Unidentified product which** constitutes $\leq 0.35\%$ total area by GC. \hat{f} See Table A-I, note \hat{f} . \hat{g} See **Table A-I, note** *g.*

Thermolysis conditions: 0.5 mL of phenyl ether solution is degassed and sealed in a glass tube, and then is heated to 400 °C for 240 minutes, then allowed to cool to RT. *b* See Table A-I, note *b*. **^ See Table A-II for starting material assay.**

 $\omega_{\rm{eff}}$

. . .

APPENDIX 3

SUPPLEMENTARY CALCULATIONS AND GRAPHS

Calculation of T50% was performed by plotting the % conversion for conversion of 23 and 24 *vs.* **temperature (Figure A-14). Similar calculations gave the T5o% values for the conversions of 6, 10, 17. and 21 (Figure A-15). The resulting T50% values are given, along with their calculated AH values, in Table A-IX.**

Schiess' method²⁰ was used to attempt to estimate Δ G^{\ddagger} values **for the conversions of 23 and 24 in order to construct a calibration curve. Literature values for activation parameters were obtained from model systems. The homolytic cleavage of biallyl at 700 °c21 was the** model for **23**. The activation parameters are $E_a = 54.5$ kcal mol⁻¹ and **log A = 13.4. The model system for 24 was the retro-ene reaction of** 1,6-heptadiene at 700 °C, with $E_a = 46.9$ kcal mol⁻¹ and log A = **II.3.22 The ASt values for 23 and 24 were assumed to be the same as their respective model systems. In addition, we assumed that differences in AHf values used in corrections were the same as the differences in the AH*.**

The ΔH for conversion of propene to an allyl radical is 3 kcal mol⁻¹ greater than ΔH for conversion of o-xylene to the 2-methylbenzyl radical. This results in a calculated ΔH^{\ddagger} of 52 kcal mol⁻¹, and a ΔG^{\ddagger} of **53 kcal mol'l at its T50%. Similarly, 0.4 kcal mol'l was subtracted from the calculated AHt for conversion of 1,6-hexadiene in order to** give an approximate ΔH^{\ddagger} value for conversion of **24.** ΔG^{\ddagger} is then calculated to be approximately 57 kcal mol⁻¹ at its T₅₀%

The values of T50% for 23 and 24 were plotted against their respective ΔG^{\ddagger} values to make a calibration curve. The slope of the line **was negative, rather than the expected positive slope. This is probably the result of two main causes: the crude nature of the approximations** of ΔH^{\ddagger} in these reactions, along with the fact that the temperature in **the pyrolysis oven is not constant throughout its length, and the thermocouple only measures the temperature in the middle of the oven.**

However, if one considers the T5o% values for all of these compounds, it is apparent that all of the compounds have similar T_{50%} values, and should therefore have reasonably similar ΔG^{\ddagger} values. **The decrease in T50% values in 6, 10, 17, and 21 as substitution at** the radical sites increases is reasonable. A decrease in ΔG^{\ddagger} with **increasing substitution is expected. However, it is possible that the** values for conversion of 17 and 21 reflect α -fragmentation reactions **rather than hydrogen transfer to give diradicals.**

Table A-IX. Estimated AH values for diradical formation from o-allyltoluene (6), o-methallyltoluene (10), o-allylethylbenzene (17), and o-allylcumene (21) and T50% values for the conversion of 6, 10, 17, 21, o-(3-butenyl)toluene (23), and o-(4-pentenyl)toluene (24)

entry	Calculated ^{<i>a</i>} ΔH . kcal mol ⁻¹	$T_{50\%}$, °C
o -allyltoluene (6)	45.0	794
o-methallyltoluene (10)	44.0	783 b
o -allylethylbenzene (17)	41.5	720
o -allylcumene (21)	37.9	705c
o -(3-butenyl)toluene (23)		761
o -(4-pentenyl)toluene (24)		697

 α See ref. 19. \dot{b} Pyrolysis of 10 was carried out at 4 tem**peratures, c Pyrolysis of 21 was carried out at only 2 temperatures.**

Figure A-14. Plot of temperature *vs.* **conversion for the FVP of o-(3-butenyl)toluene (23) and o-(4-pentenyl)toluene** (24) .

 \sim

Figure A-15. Plot of temperature *vs.* **conversion for the FVP of o-allyltoluene (10), o-methallyltoluene (10), o-allylethylbenzene (17), and o-allylcumene (21).**

PAPER 3. COUPLING OF DIRADICALS GENERATED BY INTRAMOLECULAR HYDROGEN-ATOM TRANSFERS: CYCLIZATION REACTIONS OF ARYL STYRENE DERIVATIVES

 $\sim 10^{-10}$

 $\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) - \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) \right) - \frac{1}{2}}{\frac{1}{2}} \right)$

INTRODUCTION

We recently reported findings concerning a novel thermally-induced hydrocarbon cyclization reaction. 1 Flash vacuum pyrolysis (FVP) of o-methallyl toluene (1) at 700-900 °C gives moderate yields of 2.2-dlmethylindan (2) along with small amounts of o-(2-methylpropenyl)toluene (3). We postulate that an intramolecular hydrogenatom transfer occurs to give a diradical intermediate (4) which then undergoes coupling to give 2 or intramolecular disproportionation to give either 1 or 3 as shown in Scheme I.

To date, the only examples of formations of diradicals or a pair of radicals by transfer of a hydrogen atom

> R **H** R ^{'H} \longrightarrow R ^o \bullet ^{R'H}₂ i **Jacques de La Branche (**

have been intramolecular photochemical² reactions and a few inter**molecular thermal reactions.3.4,5 There is only one other report**

 $\bar{\mathcal{A}}$

109

which presents evidence for the formation of a diradical by thermally-induced transfer of a hydrogen atom and this is for the cyclization of an organosilicon compound.6

As part of our previous study, we investigated the FVP behavior of other derivatives including o-allylethylbenzene (5) and o-allylcumene (6). We had believed that the relative stability of predicted diradical intermediates 7 and 8, respectively, would allow investigation

of the hydrogen atom transfer reaction at.lower temperatures. Unfortunately. compounds 5 and 6, particularly 6, undergo competetive a-fragmentation to give a large number of products. We also observed that in solution, 1 largely isomerizes to 3; only a small amount of 2 is formed, and then only at high temperatures.

In this chapter, we report the results of the study of the products of the FVP of 2-methyl-2'-vinylbiphenyl (9), which was expected to be more resistant to fragmentation reactions than 5 or 6. The results from the FVP of 9 could be explained by other mechanisms besides hydrogen transfer/diradical coupling. Therefore we investigated the pyrolysis of 2-(o-methylbenzyl)styrene (10), which contains a methylene bridge between the aryl rings to act as an 'insulator* to eliminate some alternative mechanisms.

 $\mathcal{L}^{\text{max}}_{\text{max}}$, where $\mathcal{L}^{\text{max}}_{\text{max}}$

 $\ddot{}$

RESULTS

A summary of the product study of the FVP of 2-methyl-2'-vinylbiphenyl (9) at 0.10 torr (600-800 °C) is presented in Table I. At 600 °C, small amounts of 9-methyl-9,10-dihydrophenanthrene (11). BM-194 (See Table I, note *b* **for an explanation of nomenclature), and phenanthrene (12) are formed. At 700 °C, the amounts of 11 and**

BM-194 have increased. Phenanthrene is now a significant component of the mixture, and a small amount of 9-methylphenanthrene (13) is detected. At 800 °C, no starting material can be detected, and the major product is 12. The amount of 11 is much lower, and the amounts of BM-194 and 13 are slightly higher. Fluorene (14), a significant product at 800 °C, is probably formed by secondary pyrolysis of primary products.

A summary of the product study of the FVP of 2-(o-methylbenzyl)styrene (10) at 0.10 torr (600-800 °C) is presented in Table II. At 600 °C, the most abundant products are compound SN-208 (See Table

I, note b for an explanation of nomenclature) and anthracene (15), and ST-208 are also produced in low yields. At 700 °C, 15 makes up over 45 % of the product mixture, and 1-Methylanthracene (16) is produced in *ca.* **7.2 % yield.**

At 700 °C, the yield of SN-208 drops substantially, and the yields of ST-208 and SEE-208 increase slightly. Two other products, SK-208 and SNN-206, are formed in low yield. At 800 °C, starting material is almost completely consumed, and 15 makes up over 60 % of the product mixture. 1-Methylanthracene accounts for nearly 12 % of the products, and compounds SN-208. ST-208, SK-208, and SNN-206 are formed in low yields (ca. 0.5-4.0%).

FVP conditions: system pressure = 0.10 torr, sample temperature = 50-60 °C. \bar{b} Amounts determined by GC with a known quantity **of biphenyl added as standard. Data represent the average of triplicate runs. Products identified by comparison with authentic samples or by retention time and GCMS are indicated by name. Products identified by GCMS only are indicated by code: XY-nnn, where 'X' represents the** experiment where first observed $(B = 2$ -methyl-2'-vinylbiphenyl, $S =$ **2-(o-methylbenzyl)styrene, 'T the individual unknown product (A. B, C, etc.), and 'nnn' the nominal mass, c Moles of product divided by total** moles of recovered material. ^{*d*} Starting material assay (GC, mole %): **2-methyl-2'-vinylbiphenyl (99.2), unidentified compounds BB (0.3), BC (0.1) BG-180 with formula C14H12 (0.1), BQ (0.1), BS-192 with formula C15H12 (0.1), BE-194 with formula C15H14 and BO-194 with** formula C_15H_14 (total of 0.1). e See Table A-I in the Appendix of Paper

Table 1. continued on next page

Table I. Continued

3, this dissertation, for a more detailed analysis. /Total moles of recovered material divided by moles of starting material used. *9* **Total moles of recovered material minus moles of recovered starting material divided by total moles of recovered material.**

	yield, % c		
entry	600° C	700 °C	800 °C
2-(<i>o</i> -methylbenzyl)styrene (10) d	65.7	13.2	1.2
$SN-208$ [C ₁₆ H ₁₆]	12.1	5.1	0.6
anthracene (15)	7.2	45.3	62.6
$ST-208$ [C ₁₆ H ₁₆]	1.1	6.6	4.4
1-methylanthracene (16)		7.2	11.8
SK-208 [C16H16]		4.3	3.2
$SNN-206$ $[Cl6H14]$		2.6	1.6
other products	14.0 e	15.7e	14.9 e
recovery \dot{J}	75.2	58.5	59.3
conversion 9	34.3	86.8	98.8

Table II. Products and recovered starting material, total recovery of material, and conversion from the FVP of 2-(o-methylben z _{*z*} y l)styrene **(10)** at various temperatures a , b

^ See Table A-I, note *a.* **^ See Table I, note** *b. ^* **See Table I, note** c. d Starting material (GC assay, relative area%): 2-(o-methylben**zyl)styrene (93.5), 2-benzylethylbenzene (1.1), unidentified products SW-208 with formula C16H16 (1.6), SJ-206 with formula C16H14 (1.4), SS-208 with formula C16H16 (1.3), SP-208 with formula C16H16 (0.7). SN-208 with formula C16H16 (0.4), SE-206 with formula C16H14 (0.2). ® See Table A-II in the Appendix of Paper 3, this** dissertation, for a more detailed analysis. \hat{f} See Table I, note f , \hat{g} See **Table I, note** *g.*

DISCUSSION

The products produced by the FVP of 2-methyl-2'-vinylbiphenyl **(9) are consistent with intramolecular hydrogen-atom transfer followed by coupling of the resulting diradical intermediate. Hydrogen-atom transfer from the methyl group of 9 would afford diradical intermediate 17. which upon coupling would give 9-methyl-9,10-dihydrophenanthrene (11). Subsequent loss of the methyl group and a p-hydrogen would give phenanthrene (12). The identity of 11 was es-**

tablished by comparison to the reported ¹H NMR spectrum of 11⁷ as well as by analysis of ¹H NMR and GCMS data. In addition to 11 and **12.** 9-methyl-phenanthrene (13) is formed in ca. 3% vield. ¹H NMR **and GCMS data are consistent with reported literature values^ for 13.**

13

117

There are a number of possible mechanisms for formation of 11 from 9 in addition to the one described above. This mechanism does require generation of 17. a relatively high energy species, but both radical sites are resonance stabilized. The ΔH_f for **17** is calculated⁹ to lie $ca. \sim 35$ kcal mol⁻¹ higher than **9**. If the transition state lies only a **few kcal mol'l above 17, it would still be accessible at** *ca. 700 °C.*

A second mechanism for the formation of 11 involves a 1,7 sigmatropic hydrogen-atom shift¹⁰ to give polyene **18**, which then **affords 11 by electrocyclic ring closure. 10 Movement of the hydrogen**

is the same as in the first mechanism, but the intermediate in this mechanism is a polyene rather than a diradical. A significant drawback to this mechanism is that it requires disruption of both aromatic rings, resulting in a loss of ca. 40 kcal mol⁻¹ in resonance en**ergy. 11**

If 18 is formed, twisting of the aryl rings would result in breaking the aryl-aryl π -bond to give 17, which could then couple rapidly. It is **also possible that the actual mechanism involves a combination of both of these mechanisms. These possibilities are shown in Scheme II.**

.

Another possible mechanism involves electrocyclic ring closure

this mechanism would require disruption of both aromatic rings in addition to severe steric interaction between the methyl group and the vinyl group. Further, if ring closure did occur, one would expect reaction to occur at the unsubstituted carbon, giving 20, which would

then give 4-methyl-9,10-dihydrophenanthrene (21). The presence of 21 could not be established by analysis of the ¹H NMR¹² and GCMS

data. This mechanism is further discredited by the fact that pyrolysis conditions (700 °C) where 2-vinylbiphenyl (23) is produced do not result in formation of 9,10-dihydrophenanthrene (24) and/or 12.13

There are a number of compounds formed which could not be identified, the most abundant of these being BM-194. Some of these intermediates could represent primary products which undergo secondary pyrolysis, possibly giving 11, 12, or fluorene (14). The increase in production of BM-194 at higher temperatures suggests that it is resistant to secondary pyrolysis. A possible structure for BM-194 is dibenzosuberane 25, but no there is convincing spectroscopic evidence for its identity.

We decided that incorporation of a methylene group between the aromatic rings would act as an "insulator" and eliminate the 1,7 sigmatropic shift, allowing us to obtain clearer support for the hydrogen-atom transfer mechanism. 2-(o-methylbenzyl)styrene (10) was

pyrolyzed, in anticipation of formation of 1-methyldibenzosuberane 26 and dibenzosuberene (27). Instead, we obtained anthracene (15) in good yields, accompanied by small amounts of 1 -methylanthracene (16). Examination of Ir NMR and GCMS data provided no clear evi-

dence for the formation of 26. Comparison with an authentic sample clearly showed that 27, the predicted product of the secondary pyrolysis of 26, is not formed. In other systems we have examined, 1 the loss of methyl groups from primary products is observed: therefore the failure to detect 27 argues against the formation of 26.

It is uncertain how 15 and 16 are formed, but a reasonable mechanism involves a 1,5 sigmatropic hydrogen shift¹⁰ to afford **o-quinodimethane (o-QDM) derivative 28. Isomerization of the double bonds would give o-QDM 29, which would be followed by electrocyclic** ring closure to give 30 and/or 31 .¹⁴ Secondary pyrolysis of 30 and 31

 \sim

would afford 15 and 16, respectively. The trends in the yields of SN-208, ST-208, or SEE-208 respect to temperature suggest that they undergo secondary pyrolysis and could be 30 or 31.

A possible drawback to this mechanism is that steric considerations would suggest more 31 would be formed, leading to 16, but it is possible that electronic effects favor formation of 30, leading to 15.

A second possible mechanism for formation of 15 and 16 involves an ene reaction **10,15 to give compound 30 and 31 directly, followed by secondary pyrolysis to give 15 and 16 as described above. However,**

the required conformation for proper orbital overlap for the ene reaction cannot be readily achieved due to the shortness of the chain length between the reacting centers. The effect of chain length in o-allylstyrene (32) on the ene reaction has been discussed by

Lambert. ¹⁶ Compound 10 can be viewed as an analog of 32 and should **therefore suffer similar restrictions on the ene reaction.**

 $\mathcal{L}_{\mathcal{A}}$

 $\ddot{}$

J.
CONCLUSION

Flash vacuum pyrolysis (FVP) of 2-methyl-2'-vinylbiphenyl (9) at 0.10 torr (600-800 °C) results in a mixture of products that are consistent with hydrogen-atom transfer from the methyl group in 9 to the double bond, followed by coupling of the resulting diradical intermediate. However, a sigmatropic hydrogen shift, followed by an electrocyclic ring closure could also explain the products that are observed.

FVP of 2-(o-methylbenzyl)styrene (10) resulted in the formation of anthracene (15) and 1-methylanthracene (16). The route leading to formation of 15 and 16 is uncertain, but we believe a likely mechanism for formation of 15 and 16 involves a sequential 1,5 hydrogen shift, electrocyclic ring closure of the resulting o-quinodimethane intermediate, and subsequent secondary pyrolysis. We were unable to obtain any clear evidence for products resulting from hydrogen transfer/diradical coupling.

EXPERIMENTAL

General Procedures

Methods and materials.

The pyrolysis apparatus has been described previously.¹⁷ NMR **spectra were obtained in dg-methylene chloride solution and chemical shifts are relative to tetramethylsilane. Spectral techniques and** general preparatory procedures have been previously described.¹ **2-iodobromobenzene. and 2-bromostyrene were purified by passing themthrough neutral alumina immediately prior to use. Other reagents were purchased as reagent grade and used as received.**

1-[2-(o-Methylphenyl)phenyl]ethanol. A modification of Hart's method was used. **18 Two equivalents of o-tolylmagnesium was allowed to react with 2-iodobromobenzene. Addition of acetaldehyde followed by workup and column chromatography on silica gel using 10% ethyl acetate in hexanes afforded l-[2-(o-Methylphenyl)phenyl]ethanol in 32 % yield. 1-Phenylethanol was also present, but it did not affect the next step.**

2-methyl-2'-vinylbiphenyl (9). A modification of Hanzlik's procedure for the preparation of 4-vinylbiphenyl was used. **19 Dehydration of l-[2-(o-tolyl)phenyl]ethanol) with KHSO4 in DMSO and hydroquinone gave 2-methyl-2'-vinylbiphenyl (9) as a colorless oil in 73 %** yield: ¹H NMR (CD₂Cl₂) δ 7.68-7.65 (dd, J_d = 7.5 Hz, J_d = 1.5 Hz., 1 **H). 7.37-7.17 (m. 5 H). 7.15-7.08 (m. 2H), 6.39 (dd, Jd = 17.6 Hz, Jd = 11.0 Hz., 1 H), 5.66 (dd. Jd = 17.6 Hz, Jd = 1.2 Hz., 1 H), 5.09 (dd. Jd**

125

126

 $= 11.0$ Hz, $J_d = 1.1$ Hz., 1 H), 2.03 (s, 3 H) [lit. ^{20 1}H NMR δ 7.66 (dd, J_d = 7.3 Hz, J_d = 2.0 Hz., 1 H), 7.40-7.08 (m, 7 H), 6.40 (dd, $J = 17.5$, **11.0 Hz., 1 H), 5.66 (dd, J= 17.6, 1.2 Hz., 1 H), 5.08 (dd, J= 11.0. 1.2 Hz., 1 H). 2.05 (s, 3 H)]; 13c NMR (CD2CI2) 6 140.56, 140.48, 136.11, 135.63, 134.84, 129.66, 129.57, 129.52, 127.31, 127.21 (2 carbons). 125.28. 124.48. 114.06, 19.58; GCMS (70 eV) m/e (% base peak) 194 (41.8), 180 (14.5), 179 (100), 178 (48.9), 165 (10.8).**

2-(o-Methylbenzyl)styrene (10). a-Bromo-o-xylene was added to 2-styrylmagnesium bromide in a procedure patterned after that used for the preparation of $o-(3-buteny)$ toluene.¹ Workup and chromatography gave 2-(o-methylbenzyl)styrene in 8% yield: ^{1}H NMR (CD_2Cl_2) δ 7.55 (dd, J_d = 7.4 Hz, J_d = 1.6 Hz, 1 H), 7.28-7.02 (m, 5 H). **6.98-6.76 (m, 3 H). 5.66 (dd. J= 17.3 Hz. Jd = 1.3 Hz.. 1 H). 5.25 (dd.** $J_{\rm d}$ = 10.9 Hz, $J_{\rm d}$ = 1.3 Hz, 1 H), 4.00 (s, 2 H), 2.27 (s, 3 H); ¹³C NMR **(CD2CI2) 5 138.5, 137.3, 139.9, 136.3, 134.4, 129.8, 129.6, 128.9, 127.7, 126.3, 126.0, 125.8, 125.5, 115.3, 36.1, 19.2; GCMS (70 eV) m/e (% base peak) 208 (29.7), 194 (15.1), 193 (100), 179 (15.5). 178 (77.6). 165 (16.9). 115 (33.3). 91 (18.1). 89 (19.4); Anal. Calcd for C16H16: C. 92.26; H. 7.74. Found; C, 92.07; H, 7.53.**

Flash vacuum pyrolysis. Flash vacuum pyrolysis was performed as previously described.21

Product analysis. FVP mixtures were analyzed as previously described.21 FID response factors were calculated for 12 and 15. Other compounds were assigned a response factor equal to biphenyl.

- **(1) Ferguson. J. M.; Malandra, J. L.; Trahanovsky, W. S., manuscript in preparation. [Paper 2, this dissertation]**
- **(2) For a recent review of solution-phase reactions of photochemically generated diradicals, see Johnston, L. J.; Scaiano, J. C.** *Chem. Rev.* **1989,** *89,* **521.**
- **(3) Poutsma, M. L.** *A Review of Thermolysis Studies of Model Compounds Relevant to Processing of Coal,* **ORNL/TM-10673, Oak Ridge National Laboratory, Oak Ridge, TN 37831. This review is available from National Technical Information Service, U. S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.**
- **(4) (a) Benson, 8.** *Int. J. Chem. Kinet.* **1980,** *12,* **755. (b) Allen, D. T.; Gavalas, G. R.** *Int. J.* **Chem.** *Kinet.* **1983,** *15* **219. (c) Franz, J. A.; Camaioni, D. M.; Beishline, R. R.; Bailing, D. K. J.** *Org. Chem.* **1984,** *49.* **3563. (d) Billmers, R.; Griffith, L. L.; Stein, S. E. J.** *Phys. Chem.* **1986,** *90,* **517. (e) Billmers, R.; Brown, R. L.; Stein, S. E. J.** *Chem. Kinet.* **1989** *21,* **375. (f) Poutsma, M, L.** *Chem. Rev.* **1989,** *90, 1***13.**
- **(5) (a) Mayo, F. R. J.** *Am. Chem. Soc.* **1968,** *90,* **1289. (b) Kirchner, K.** *Makromol. Chem.* **1969,** *128,* **150. (c) Buchholz, K.; Kirchner, K.** *Makromol. Chem.* **1976, J 77, 935. (d) Olaj, O. F.; Kauffmann, H. F.; Breitenbach, J. W.** *Makromol. Chem.* **1977,** *178,* **2707.**
- **(6) Bain, S.; Ijadi-Maghsoodi, S.; Barton, T. J.** *Organometallics,* **1987,** *6,* **1136.**
- **(7) Rabideau, P. W.; Garvey, R. G. J.** *Org. Chem.* **1970,** *35,* **25.**
- **(8) Lambert, J. B.; Fabricius, D. M.; Hoard. J. A. J.** *Org. Chem.* **1979, 44, 1480.**
- **(9) Benson, S. W.** *Thermochemical Kinetics,* **2nd ed.; Wiley: 1976.**
- **(10) For a brief descripton this and related pericyclic reactions, see: (a) Woodward, R. B.; Hoffman, R. 'The Conservation of Orbital Symmetry"; Academic Press: New York, 1970. (b) Carey, F. A.; Sundberg, R. J. "Advanced Organic Chemistry": Plenum: New**

York, 1984. (c) Lowry, T. H,; Richardson. K. S. "Mechanism and Theory in Organic Chemistry"; Harper and Row; New York, 1987.

- **(11) The Dewar resonance energy for benzene has been calculated to be 21.2 kcal mol'l. See; Baird, N. C. J.** *Chem. Educ.* **1971,** *48.* **509.**
- **(12) Strothers, J. B.; Tan, C. T.; Wilson, N. K.** *Org. Magn. Reson.* **1977, 9, 408**
- **(13) Padwa, A.; Caruso, T.; Nahm, S.; Rodriguez, A. J.** *Am. Chem. Soc.* **1982,** *104,* **2865.**
- **(14) (a) Jensen, F. R.; Coleman, W. E. J.** *Am. Chem. Soc.* **1958, 6148. (b) Arnold, B. J.; Sammes, P. G.; Wallace, T. W. J.** *Chem. Soc., Perk. Trans. I.* **1974, 415. (c) Straub, H.; Hambrecht, J.** *Synthesis* **1975, 425.**
- **(15) (a) Hoffman, H. M. R.** *Angew. Chem.* **1969,** *81,* **597;** *Angew. Chem.: Angew. Chem. Int. Ed. Engl.* **1969,** *8,* **557. (a) Oppolzer, W.; Snieckus, V.** *Angew. Chem.* **1978,** *90,* **506;** *Angew. Chem.; Angew. Chem. Int. Ed. Engl.* **1978,** *17,* **476.**
- **(16) Lambert, J. B.; Napoli, J. J. J.** *Am. Chem. Soc.* **1973, 294.**
- **(17) (a) Trahanovsky, W. S.; Ong, C. C.; Pataky, J. G.; Weitl, F. L.; Mullen. P. W.; Clardy, J. C.; Hansen, R. S. J.** *Org. Chem.* **1971,** *36,* **3575. Commercial apparatus is available from Kontes Scientific Glassware, Vineland. NJ 08360. (b) For review, see Brown, R. C. F.** *Pyrolysis Methods in Organic Chemistry;* **Academic: New York, 1980, Chapter 2.**
- **(18) Hart, H.; Katsumasa, H.; Du, C.-J. F. J.** *Org. Chem.* **1985, 40. 3104.**
- **(19) Hanzlik. R. P.; Shearer. G. O. J.** *Am. Chem. Soc.* **1975,** *97,* **5231.**
- **(20) Bates, R. B.; Camou, F. A.; Kane, V. V.; Mishra, P. K.; Suvannachut, K.; White, J. J. J.** *Org. Chem.* **1989, 54, 311.**

(21) Malandra, J. L. Ph. D. Dissertation, Iowa State University of Science and Technology, 1993.

 $\Delta \sim 1$

 \sim ω

 $\hat{\mathcal{A}}$

 \overline{a}

 $\hat{\mathcal{A}}$

APPENDIX 1

 $\sim 10^{-11}$

 $\sim 10^{-10}$

SPECTRA

 $\sim 10^7$

 $\mathcal{L}(\mathcal{A})$.

Figure A-1. ¹H NMR spectrum (300 MHz, CD₂Cl₂) of 2-methyl-2-vinylbiphenyl (9) (S: **CHDCI2. W: H2O, T: tetramethylsilane. X: unidentified impurity).**

at 700 °C of 2-methyl-2-vlnylbiphenyl (9) (S; CHDCI2. W; H2O).

132

Figure A-3A. ^IH NMR spectrum (300 MHz, CD₂Cl₂) of 2-(o-methylbenzyl)styrene (10) (S: **CHDCI2, W: H2O. T: tetramethylsilane. H: high-boiling residue from hexanes, X: unidentified impurity).**

 $\langle \rangle$

T

Figure A-3B. 13q **nmR spectrum (75.5 Hz, CD2CI2) of o-I(2-methyl)phenylmethyl)styrene (10) (S: CD2CI2. T: tetramethylsilane).**

Figure A-3C. 13 C NMR spectrum (75.5 Hz, CD2Cl2) of the downfield region of **o-I(2-methyl)phenylmethyl)styrene (10).**

at 700 °C of 2-(o-methylbenzyl)styrene (10) (S; CHDCI2. W; H2O).

 $\frac{1}{2}$

APPENDIX 2

SUPPLEMENTARY DATA TABLES

Table A-I. Products and recovered starting material, total recovery **of material, and conversion from the FVP of o-2-methyl-2'-vinylbiphenyl (9) at various temperatures**

 \bar{z}

Table A-I continues on next page

Cl FVP conditions: system pressure = 0.10 torr, sample temperature = 50-60 °C. \overline{b} Amounts determined by GC with a known **quantity of biphenyl added as standard. Data represent the average of triplicate runs. Products identified by comparison with authentic samples or those that could be identified by retention time and GCMS are indicated by name. Products that were identified by GCMS only are indicated by code; XY-nnn, where 'X' corresponds to** the system first observed $(B = 2$ -methyl-2'-vinylbiphenyl, $S =$ **o-((2-methyl)phenylmethyl)styrene. 'Y' to the individual unknown product (A, B, C, etc.), and 'nnn' to the nominal mass, c Moles of** product divided by total moles of recovered material. ^d Starting material purity assay. ^{*e*} Unidentified product which constitutes \leq 0.25% total area by GC. f Total moles of recovered material divided **by moles of starting material used.** *9* **Total moles of recovered material minus moles of recovered starting material divided by total moles of recovered material.**

Table A-II. Products and recovered starting material, total recovery of material, and conversion from the FVP of 2-(o-methylbenzyl)styrene (10) at various temperatures

	yield, % c			
entry	RT ^d	600°C	700 °C	800 °C
ethylbenzene				0.40
styrene				0.41
o-ethyltoluene				0.25
o-methylstyrene				0.39
indene			0.56	1.04
naphthalene				0.58
o-benzyltoluene		0.14	0.46	0.39
fluorene (14)				0.32
SA-196 [C ₁₅ H ₁₆]		0.16		
o-benzylethylbenzene	1.06	1.05	0.70	0.39
SB-194 [C ₁₅ H ₁₄]			0.40	
SC-196 [C15H14]			0.22	0.29
SD-208 [C16H16]				0.16
SE-206 [C16H14]	0.17			
SF-180 [C ₁₄ H ₁₂]			0.33	
SG-194 [C15H14]		0.14		0.19
SH-208 [C16H16]		0.55		

 \sim

Table A-II continues on next page

 $\sim 10^6$

 \sim \bar{z}

 $\sim 10^{-10}$

Table A-II continues on next page

 $\mathcal{L}^{\text{max}}_{\text{max}}$, $\mathcal{L}^{\text{max}}_{\text{max}}$

Table A-II. Continued

	yield, % c			
entry	RT ^d	600 °C	700 °C	800 °C
$SCC-208$ $[Cl6H16]$		0.45	1.35	1.44
SDD-208 [C16H16]		0.94		
anthracene (15)		7.24	45.29	62.58
SEE-208 [C16H16]		1.07	3.05	0.42
SFF-208 [C16H16]		0.15		
SGG-208 [C16H16]		0.23	0.83	0.59
SHH-208 [C16H16]		0.46	0.37	
SII-192 [C ₁₅ H ₁₂]				0.36
SJJ-208 [C16H16]			0.41	0.53
SKK-206 [C16H14]			0.14	
SLL-192 [C ₁₅ H ₁₂]			0.35	1.24
1-methylanthracene (16)			7.20	11.78
9-methylanthracene		1.26	1.26	0.85
SMM-206 $[C16H14]$		0.18		0.23
SNN-206 [C16H14]			2.55	1.57
$SOO-206$ $[Cl6H14]$		0.63		0.22
SPP-204 [C ₁₆ H ₁₂]		0.22		0.45
$SQQ-206$ [C ₁₆ H ₁₄]			0.38	0.30
SRR-206 [C16H14]				0.41
recovery f	100.00	75.24	58.45	59.28
conversion 9	d	51.02	85.34	93.91

 \sim

Table A-II continues on next page

Table A-II. Continued

CI FVP conditions: system pressure = 0.10 torr, sample temperature = 50-60 °C. b See Table I, note b. c See Table I, note c. \hat{d} Assay of starting material by GC in area percentages. ^{*e*} Unidentified product which constitutes $\leq 0.25\%$ total area by GC. *f* See Table I, note *f. 9* See **Table I. note** *g.*

PAPER 4. COUPLING OF DIRADICALS GENERATED BY INTRAMOLECULAR HYDROGEN-ATOM TRANSFERS: CYCLIZATION REACTIONS OF ALLYLPHENOLS

 $\Delta \sim 10^{11}$ m $^{-1}$

 ~ 10

 $\mathcal{O}(n)$. The mass of $\mathcal{O}(n)$

 $\sim 10^{-10}$

INTRODUCTION

We have recently reported findings concerning the conversion of o-methallyltoluene (1) to 2,2-dimethylindan (2) and o-(2-methylpropenyl)toluene (3) under flash vacuum pyrolysis (FVP) conditions.! We postulate that an intramolecular hydrogen-atom transfer occurs to give a diradical intermediate (4) which then undergoes coupling or intramolecular disproportionation. We have also reported that FVP of

2-methyl-2'-vinylbiphenyl (5) at 600-800 °C, gives 9-methyl-9.10-dihydrophenanthrene (6), presumably through diradical intermediate 7.2

 \mathcal{L}

 $\frac{1}{2}$

142

While there are several examples of formation of diradicals or a pair of radicals by transfer of a hydrogen atom
 RH R^IH <u>I</u> R[•] P

$$
\begin{array}{cccc}\n\text{RH} & \text{RH} & \longrightarrow & \text{R}^{\bullet} & \bullet \text{R}^{\prime} \text{H}_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots\n\end{array}
$$

by intramolecular photochemical reactions^ or intermolecular thermal reactions4.5,6_ **there has been only one other report which presents evidence for the formation of a diradical by transfer of a hydrogen atom and this is for the cyclization of an organosilicon compound. ^**

We investigated the FVP reactions of o-allylphenol (8), and o-I(l-methylallyl)phenol (9) to determine whether these compounds undergo cyclization in the same manner as 1 and 5.

RESULTS

A summary of the product studies of the flash vacuum pyrolysis (FVP) of 2-allylphenol (8) at 0.10 torr (600-800 °C) are presented in Table I. At 600 °C, the major product is 2,3-dihydro-2-methylbenzofuran (10). Smaller amounts of benzofuran (11), E-(o-l-propenyl)phenol (12), and 2-methylbenzofuran (13) are produced. At 700 °C, the

amounts of 10-13 increase. At 800 °C, 11 makes up nearly half of the product mixture, and the amount of 10 drops. Starting material is nearly completely consumed, and 12 is obtained in greater than 10 % yield.

A summary of the product studies of the FVP of 2-(l-methylallyl)phenol **(9)** at 0.10 torr **(600-800 °C)** are presented in Table II. At **600 °C, the major product is trans-2,3-dihydro-2,3-dimethylbenzofuran (14), The** *cis* **isomer (15) makes up** *ca.* **18 % of the product. 2,3-Dimethylbenzofuran (16), 13, and 11 are also formed. At 700 °C,**

144

11 is now the predominant product, and the yield of 13 is much higher. The yields of 14 and 15 drop somewhat, a At 800 °C, 11 makes up over 70 % of the product mixture, and most of the remainder is 13. No other compound represents more than *ca.* **2.9 % of the mixture.**

 $\ddot{}$

		yield, % c	
entry	600°C	700 °C	800 $°C$
2-allylphenol (8) d	49.0	18.1	6.1
2,3-dihydro-2-methylbenzofuran			
(10)	27.0	37.4	11.1
benzofuran (11)	10.2	20.6	48.4
$E-(o-1-propenyl)$ phenol (12)	3.7	6.9	10.1
2-methylbenzofuran (13)	1.4	4.1	7.2
AD-134 [C9H10O]	0.9	2.8	1.6
other products	8.7 e	13.0 e	17.1 e
recovery f	93.6	81.0	58.5
conversion g	51.0	81.9	93.9

Table I. Products and recovered starting material, total recovery of material, and conversion from the FVP of 2-allylphenol (8) at various temperatures

FVP conditions: system pressure = 0.10 torr, sample temperature = 0 °C. b Amounts determined by GC with a known quantity of biphenyl added as standard. Data represent the average of triplicate runs. Products identified by comparison with authentic samples or by retention time and GCMS are indicated by name. Products identified by GCMS only are indicated by code: XY-nnn, where *X' represents the experiment where first observed $(A = 2$ -allylphenol. $M =$ **2-(l-methylallyl)phenol, 'V the individual unknown product (A, B, C,** etc.), and 'nnn' the nominal mass. ^{*c*} Moles of product divided by total moles of recovered material. d Starting material assay (GC, mole %): **o-allylphenol (96.4), 2,3-dihydro-2-methylbenzofuran (3.6). ^ See Table A-I in the Appendix of Paper 3, this dissertation, for a more detailed analysis. /Total moles of recovered material divided by moles of starting material used.** *9* **Total moles of recovered material minus moles of recovered starting material divided by total moles of recovered material.**

Table II. Products and recovered starting material, total recovery of material, and conversion from the FVP of 2-(l-methylallyl)phenol (9) at various oven temperatures

		yield, % c	
entry	600°C	700 °C	800 °C
trans-2,3-dihydro-2,3-dimethyl-			
benzofuran (14)	40.7	25.6	1.7
cis-2,3-dihydro-2,3-dimethylben-			
zofuran (15)	18.1	9.1	1.0
2-(1-methylallyl)phenol (9) d	13.7		
2-methylbenzofuran (13)	9.3	21.1	14.5
2,3-dimethylbenzofuran (16)	3.1	4.8	2.9
benzofuran (11)	3.0	26.3	71.1
other products e	12.0	13.1	8.8
recovery \vec{J}	73.1	65.4	64.9
conversion 9	86.3	100.0	100.0

^ See Table A-I, note a. b See Table I, note *b. ^* **See Table 1, note** c. d Starting material (GC assay, relative area%): 2-(1-methylallyl)phenol (98.5), MY-148 (0.8), MP-148 (0.7). ^{*e*} See Table A-II in the **Appendix of Paper 3, this dissertation, for a more detailed analysis.** *f* **See Table I. note /.** *9* **See Table I, note** *g.*

DISCUSSION

The formation of the major products of the FVP of o-allylphenol (S) and o-[(l-methylallyl)phenol (9) are explained by the intramolecular hydrogen-atom transfer/diradical coupling mechanism we have proposed. At low temperatures, FVP of 8 affords 2,3-dihydro-2-methylbenzofuran (10) as the major component, and small amounts of E-(o-l-propenyl)phenol (11) are also formed. The formation of 10 and 11 can be explained by intramolecular hydrogen-atom transfer of the phenolic hydrogen the end of the double bond to give diradical 17.8 Coupling of 17 would give 10, and disproportionation would give either starting material or 12. Secondary pyrolysis of 10 is probably responsible for the formation of compounds 11 and 13.

Analysis of GCMS and NMR data strongly suggested the production of chroman (18), although its presence could not be definitely established. The likely route to 18 is by hydrogen transfer to the

148

internal carbon of the double bond followed by coupling of the resulting diradical (19)

The cyclization of 8 to 10 under acid-catalyzed 12 conditions has been previously observed. In addition, photolysis of 8 is known to afford 10 and 19.¹³ The ratio of **10 : 18** we observe at 800 °C **resembles that reported by Miranda, l^i which adds some support to our identification of chroman.**

Recent work by Li^{14} in our laboratory indicates that the cycliza**tion of 10 is reversible. Secondary pyrolysis of 10, which is produced from a different precursor, results in the production of substantial amounts of 10 and 12, although 11 was the major product. We have previously observed that the cyclization of 2,2-dimethylindan (2) is reversible, 1 and Li's results are consistent with a hydrogen transfer/diradical intermediate mechanism for 8.**

FVP of o-[{l-methylallyl)phenol (9) gives good yields of both the *trans-* **and** *cis-* **isomers of 2,3-dihydro-2,3-dimethylbenzofuran (14 and 15, respectively) as the major products at low temperatures. 14 and 15** were identified based on analysis of the GCMS and ¹H NMR data, including comparison to the 1 H NMR reported in the literature.¹⁵ **Formation of 14 and 15 is consistent with formation and coupling of diradical 20. Double bond isomer 21, the anticipated product of dis**

proportionation of 20, was not found, but it is possible that the presence of the α -methyl group leads to fragmentation reactions.¹ **Compounds 11, 13, and 16 are probably the products of secondary pyrolysis of 14 and 15.**

A related study concerning the flow pyrolysis behavior of dihydrobenzofuran derivatives has been recently published. When dihydrobenzofuran (22) is pyrolyzed in a toluene/N2 mixture at 700-750 °C, o-vinylphenol (23), and 11 are formed in a 1 : 1 ratio. They propose that 23 arises by C-O cleavage to give diradical 24, followed by disproportionation of 24.

 $\ddot{}$

للأراد المتأمل

In addition, pyrolysis of a mixture of 14 and 15 under similar conditions affords 11 and 13 in a 5 : 1 ratio, which is close to the ratio we observed at 800 °C. They propose that ring opening of 14/15 occurs to afford diradical **20**, which then loses the α -methyl group to **give 25. Cyclization of 25 would be followed by loss of either the P-methyl group to give 11 or the or p-hydrogen to afford 13. This series of reactions could explain formation of some of the secondary pyrolysis products we observe, however, cleavage of methyl groups**

from 14 and 15 directly without ring opening is also possible. Their results are consistent with our findings in several respects: high yields of 11, formation of 12, and no 21 observed. However, they did not report finding any 16. It is possible that the pyrolysis conditions they employed disfavored formation of 21.

CONCLUSION

The flash vacuum pyrolysis (FVP) of 2-allylphenol (8) at 0.10 torr (600-800 °C) gives 2,3-dihydro-2-methylbenzofuran (10), as the main primary product, along with low yields of E-(o-l-propenyl)phenol (12). Benzofuran (11) and 2-methylbenzofuran (13) are produced by secondary pyrolysis of 8.

Likewise, FVP of 2-(1-methylallyl)phenol (9) under similar condi**tions gives fair yields of 2,3-dihydro-2.3-dimethylbenzofuran (14 and 15) as a mixture of cis- and** *trans-* **isomers. Secondary pyrolysis of 14 and 15 affords 11, 13, and 2,3-dimethylbenzofuran (16). The formation of 10 and 12 from 8 and of 14 and 15 from 9 are consistent with hydrogen-atom transfer reactions to afford diradical intermediates (14 and 19) which then undergo coupling or intramolecular disproportionation.**

 $\frac{1}{2} \left(\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2$

EXPERIMENTAL

Methods and materials.

The pyrolysis apparatus has been described previously, ^ Unless otherwise noted, NMR spectra were obtained in dg-methylene chloride solution and chemical shifts are relative to tetramethylsilane. ¹H NMR **spectra were recorded on a Nicolet NT-300 spectrometer. GCMS was performed on Finnegan 4500 spectrophotometer with 70-eV EI after separation on a DB-1701 capillary column or on a Finnegan Magnum quadrapole ion-trap spectrophotomer with 70-eV EI after separation on a DB-5 capillary column. o-Allylphenol was purchased from Aldrich and purified by colum chromatography prior to use.**

Phenyl crotyl ether. Phenyl crotyl ether was prepared by Claisen's method: $9a \, 1$ **H** NMR (CD₂Cl₂) δ 7.31–7.19 (m, 2 H), 6.95–6.81 **(m. 2 H). 5.93-5.62 (m, 2 H). 4.42 (dd. Jd = 5.8 Hz, Jd = 0.8 Hz. 2 H).** 1.73 (dd, $J_d = 6.1$ Hz, $J_d = 1.1$ Hz, 3 H).

o-(l-Methylallyl)phenol (9). o-(l-methylallyl)phenol (9) was prepared by Claisen's method:^{9a 1}H NMR (CD_2Cl_2) δ 7.20-7.02 $(m, 2)$ **H). 6.89 (t. Jt = 7.5 Hz. 1 H), 6.77 (d. J = 6.8 Hz. I H). 6.14-5.97 (m, I H). 5.21-5.04 (m. 3 H). 3.80-3.64 (m. 1 H). 1.36 (d. J = 7.2 Hz. 1 H); [lit. 17 iH NMR (CCI4) 5 7.20-6.55 (m, 4 H). 6.33-5.78 (m. 1 H). 5.30- 4.90 (m. 3 H), 3.93-3.40 (m. 1 H). 1.36 (d. 3 H)].**

Flash vacuum pyrolysis. Flash vacuum pyrolysis (FVP) was performed as previously described. 18

153

Product analysis. FVP reaction mixtures were analyzed by capillary gas chromatography as previously described. 15 Flame ionization detector response factors were calculated for 8, 10, and 11. Compounds 9 and 12 were assumed to have response factors equal to 8. Compounds 13 and 16 were assumed to have response factors equal to 11. Compounds 14 and 15 were assumed to have response factors equal to 10. Other compounds were assigned response factors equal to biphenyl.

REFERENCES

- **(1) Ferguson, J. M.; Malandra, J. L.; Trahanovsky, W. S., manuscript in preparation. [Paper 2, this dissertation]**
- **(2) Ferguson, J. M.; Trahanovsky, W. S,, manuscript in preparation. [Paper 3, this dissertation]**
- **(3) For a recent review of solution-phase reactions of photochemically generated diradicals, see Johnston, L. J.; Scaiano, J. C.** *Chem. Rev.* **1989,** *89,* **521.**
- **(4) Poutsma, M. L.** *A Review of Thermolysis Studies of Model Compounds Relevant to Processing of Coal,* **ORNL/TM-10673, Oak Ridge National Laboratory, Oak Ridge, TN 37831. This review is available from National Technical Information Service, U. S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.**
- **(5) (a) Benson, S.** *Int. J. Chem. Ktnet* **1980,** *12,* **755. (b) Allen. D. T.; Gavalas, G. R.** *Int. J. Chem. Kinet.* **1983,** *15* **219. (c) Franz, J. A.; Camaioni, D. M.; Beishline, R. R.; Bailing, D. K. J.** *Org. Chem.* **1984,** *49,* **3563. (d) Billmers, R.; Griffith, L. L.; Stein, S. E. J.** *Phys. Chem.* **1986,** *90,* **517. (e) Billmers, R.; Brown. R. L.; Stein, 5. E.** *J. Chem. Kinet* **1989** *21.* **375. (f) Poutsma, M. L.** *Chem. Rev.* **1989, 90, 113.**
- **(6) (a) Mayo, F. R. J.** *Am. Chem. Soc.* **1968,** *90,* **1289. (b) Kirchner. K.** *Makromol. Chem.* **1969,** *128,* **150. (c) Buchholz, K.; Kirchner, K.** *Makromol. Chem.* **1976.** *177,* **935. (d) Olaj, O. F.; Kauffmann, H. F.; Breitenbach, J. W.** *Makromol Chem.* **1977.** *178,* **2707.**
- **(7) Bain, S.; Ijadi-Maghsoodi, S.; Barton. T. J.** *Organometallics,* **1987,** *6,* **1136.**
- **(8) The possibility of the cyclization preceding by proton transfer and coupling of the resulting zwitterion can be eliminated by examination of the heats of formation of the two pathways. While** the heat of formation of the phenoxy anion⁹ is $c\overline{a}$. **50** kcal mol⁻¹ lower than that of the phenoxy radical¹⁰, the heat of formation of the secondary cation⁹ site is *ca.* **170** kcal mol⁻¹ higher than

that of the radical.¹¹ Therefore, the zwitterionic mechanism is **ca. 120 kcal mol'l higher than the diradical mechanism, and the energy required is prohibitively high.**

- **(9) Olivella, S.; Urpi, F.; Vilarrasa, J. J.** *Comput Chem.* **1984, 5, 230.**
- **(10) Back, M. H, J.** *Phys. Chem.* **1989,** *93,* **6880.**
- **(11) Tschuikow-Roux, E.; Chen, Y. J,** *Am Chem. Soc.* **1989,** *111,* **9030.**
- **(12) (a) Claisen, L.; Tietze, E.** *Ber.* **1926,** *59,* **2344. (b) Claisen, L.** *Chem. Zentr.;* **1914,** *2,* **1213. (c) Adams, R. Rindfusz, R. E. J.** *Am. Chem. Soc.* **1919,** *41,* **648. (d) Fairless, B. J.; Ragsdale, G.; Kerby, C. J.** *Chem. Educ.* **1974,** *51,* **61. (e) Mayo, F. R. J.** *Am. Chem. Soc.* **1968,** *90,* **1289,**
- **(13) (a) Frâter, G.; Schmid, H.** *Helv. Chim. Acta.* **1967,** *50,* **255. (b) Horspool, W. M.; Pauson, P. L. J.** *Chem. Soc., Chem. Commun.* **1967, 195, (c) Kropp, P. J.; Krauss, H. J. J.** *Am. Chem. Soc.* **1969,** *91,* **7466. (d) Shani, A.; Mechoulam, R.** *Tetrahedron* **1971, 27, 601. (e) Houri, S.; Geresh, S.; Shani. A.** *Isr. J. Chem.* **1973, 11, 805. (f) Geresh, S.; Levy, O.; Markovits, Y.; Shani, A.;** *Tetrahedron* **1975,** *31,* **2803. (g) Kitamura, T.; Imagawa, T.; Kawanisi, M.** *Tetrahedron* **1978, 34, 3451. (h) Chow, Y.** *L.;* **Zhou. X.-M.; Gaitan, T. J.; Wu, Z.-Z,** *J. Am. Chem. Soc.* **1989,** *111,* **3813. (i) Miranda, M. A.; Tormos, R. J.** *Org. Chem.* **1993,** *58,* **3304.**
- **(14) Li, F.; Trahanovsky, W. S. Unpublished results.**
- **(15) Crow, W. D.; McNab, H.** *Aust. J. Chem.* **1979,** *32,* **123.**
- **(16) van Meurs, M.; Arends, I, W. C. E,; Louw, R.; Mulder, P.** *Reel. Trav. Chim. Pas-Bas* **1991, J JO, 475.**
- **(17) Mukaiyama, T.; Usui, M.; Shimada, E.; Saigo, K.** *Chem. Lett.* **1975, 1041.**
- **(18) Malandra, J. L. Ph.D. Dissertation, Iowa State University of Science and Technology, 1993.**

APPENDIX 1

 $\sim 10^7$

SPECTRA

¹H NMR spectrum (300 MHz, CD₂Cl₂) of the pyrolysis mixture from the FVP Figure A-1. at 700 °C of o -allylphenol (8) (S: CHDCl₂, W: H₂O, T: tetramethylsilane).

¹H NMR spectrum (300 Hz, CD₂Cl₂) of the pyrolysis mixture from the FVP of *o*-allylphenol (8) at 800 °C (S: CHDCl₂, W: H₂O, T: tetramethylsilane). Figure A-2.

¹H NMR spectrum (300 MHz, CD₂Cl₂) of o -(1-methylallyl)phenol (9) (S: CHDCl₂, W: H₂O, T: tetramethylsilane, X: unidentified impurity)

¹H NMR spectrum (300 MHz, CD₂Cl₂) of the pyrolysis mixture from the FVP at 800 Figure A-4. °C of o-(1-methylallyl)phenol (9) (S: CHDCl2, W: H₂O, T: tetramethylsilane)

162

APPENDIX 2

SUPPLEMENTARY DATA TABLES

Table A-I. Products and recovered starting material, total recovery of material, and conversion from the FVP of o-allylphenol (8) at various temperatures

Table A-I continues on next page

 $\ddot{}$

Table A-I. Continued

FVP conditions: system pressure = 0.10 torr, sample temperature = 50-60 °C. \dot{b} Amounts determined by GC with a known **quantity of biphenyl added as standard. Data represent the average of triphcate runs. Products identified by comparison with authentic samples or those that could be identified by retention time and GCMS are indicated by name. Products that were identified by GCMS only are indicated by code: XY-nnn. where 'X' corresponds to** the system first observed $(A = o$ -allylphenol, $M = o-(\alpha$ -methylal**lyl)phenol.** *'T* **to the individual unknown product (A, B. C, etc.), and 'nnn* to the nominal mass, c Moles of product divided by total moles** of recovered material. ^d Starting material purity assay. ^{*e*} Unidentified product which constitutes $\leq 0.13\%$ total area by GC. f Total moles **of recovered material divided by moles of starting material used. P Total moles of recovered material minus moles of recovered starting material divided by total moles of recovered material.**

 $\sim 10^{-1}$

 $\boldsymbol{\cdot}$

l,

 $\bar{\beta}$

Table A-II continues on next page

Table A-n. Continued

	yield, % c			
entry	RT d	600 °C	700 °C	800 °C
MM-148 [C ₁₀ H ₁₂ O]			0.68	0.53
MN-132 [C9H8O]			0.17	
MO-136 [C9H12O]				0.38
cis-2,3-dimethyl-2,3-dihydroben- zofuran (15)		18.12	9.07	1.03
MP-148 [C ₁₀ H ₁₂ O]		1.00	1.23	0.71
MQ-148 [C10H12O]		3.60	0.90	0.48
MR-146 [C10H10O]		0.18	0.97	0.24
MS-146 [C ₁₀ H ₁₀ O]		0.38		
MT-146 [C10H10O]		0.46		
2,3-dimethylbenzofuran (16)		3.08	4.79	2.85
MU-148 [C ₁₀ H ₁₂ O]		0.82	1.70	0.24
MV-144 [C ₁₀ H ₈ O]		1.34	0.40	0.32
MW-160 [C11H10O]		1.21	0.42	
MX-146 [C ₁₀ H ₁₀ O]			0.73	
MY-148 [C10H12O]		2.18		
MZ		\boldsymbol{e}		
MAA				\boldsymbol{e}
MBB				e
o-(1-methylallyl)phenol (9)	100.00	13.67		
MCC-136 [C9H12O]			2.35	0.13

Table A-II continues on next page

 $\overline{}$

Table A-II. Continued

 α FVP conditions: system pressure = 0.10 torr, sample temperature = 0 °C. b See Table I, note b . c See Table I, note c . d Assay of starting material by GC in area percentages. ^{*e*} Unidentified product which constitutes $\leq 0.18\%$ total area by GC. *f* Unidentified product which constitutes $\leq 0.43\%$ total area by GC. *9* See Table I, note *f*. **^ See Table I, note** *g.*

GENERAL SUMMARY

In the first section of this dissertation, two novel thermal reactions of ferrocene derivatives have been reported. Flash vacuum pyrolysis (FVP) has been used to prepare ferrocenocyclobutene from the N-amino-2-phenylaziridine hydrazone of 2-methylferrocenealdehyde. Heating of the hydrazone results in formation of 2-methylferrocenylcarbene which closes to give ferrocenocyclobutene. Heating of ferrocenocyclobutene and N-phenylmaleimide (NPMI) in phenyl ether at 200 °C for 30 h gives two stereoisomeric compounds which correspond to 1 : 1 adducts of NPMI and the parent ferrocene-based o-quinodimethane. The major product, corresponding to endo-addition of NPMI to the orgahometallic o-quinodimethane derivative, is isolated in 13% yield. Unfortunately, the low yields for the FVP and trapping steps suggest that this approach is not feasable for development into a synthetic method for preparation of fused-ring compounds.

Paper 2 concerns the FVP reactions of o-allyltoluene and some related compounds. We propose that these reactions take place by thermally-induced intramolecular hydrogen-atom transfers which generate diradical intermediates. The diradicals can either couple or undergo intramolecular disproportionation reactions. Calculated AH values for formation of some of the proposed diradicals indicate that diradical formation is reasonable at the temperatures of pyrolysis (700-900 °C). This reaction has no precedent in hydrocarbon **chemistry and could represent a novel means of creating fused-ring carbocyclic compounds.**

In Paper 3, we reported that the FVP of 2-methyl-2'-vinylbiphenyl affords 9-methyl-9,10-dihydrophenanthrene. The formation of this compound fits our proposed mechanism, although other mechanisms can be proposed for this cyclization. In contrast, the FVP of 2-(o-methylbenzyl)styrene does not give products consistent with hydrogen transfer/diradical coupling. Instead, anthracene and l-methylanthracene are the major products. While the means of their formation is uncertain, a reasonable mechanism involving an o-quinodimethane intermediate has been proposed. It is possible that the cyclizations of 2-methyl-2'-vinylbiphenyl and 2-(o-methylbenzyl)styrene could be reasonable models for the formation of phenanthrene and anthracene substructures found in high-rank coals.

Paper 4 reports the successful application of this hydrogen-atom transfer/diradical coupling reaction to the preparation of benzofuran derivatives by the FVP of o-allylphenol and o-(l-methylallyl)phenol. This hydrogen-atom transfer/diradical coupling reaction offers considerable possibilities for future research, including synthesis of carbocyclic and heterocyclic fused-ring systems.

ACKNOWLEDGEMENTS

I would like to thank Professor Walter S. Trahanovsky for his help and guidance during my graduate studies. I would also like to thank the members of the Trahanovsky research group and the other graduate students in the Department of Chemistry for their friendship, advice, and assistance. I also wish to extend thanks to my friends whom I have met since I came to Ames. I am grateful for their kindness and support when things seemed toughest,

I want to especially thank my parents for their love, support, and encouragement. I want to thank my daughter, Abby, for reminding me that there are far more important things than graduate school. Most of all, I want to thank my wife, Kelly, for her love, devotion, and incredible patience with me during the years as 1 have worked to get to this point. I dedicate this dissertation to her.